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I. Summary of Work

We developed a new algorithm to adaptively optimize binary and quaternary
signatures for code-division multiple-access (CDMA) communications over mul-
tipath channels and/or asynchronous channel access. Using the observed signal
autocorrelation matrix, the algorithm attempts to maximize, over the binary or
quaternary antipodal sequence field, the signal-to-interference-plus-noise ratio
(SINR) at the output of the maximum SINR linear filter. While this maximiza-
tion problem is NP-hard, the algorithm is seen to produce in short polynomial
time highly desirable solutions that approach in performance the theory-only
complex/real-field optimal signature vectors. Signature adaptation may be car-
ried out in either a single or a multi-user mode. Simulation studies offer direct
performance comparisons with other known binary signature set designs and
the theoretical complex/real-valued optimal vectors.

We derived new bounds on the periodic (cyclic) total squared correlation
(PTSC) of binary antipodal signature sets for any number of signatures K and
any signature length L. Optimal designs that achieve the new bounds are then
developed for several (K,L) cases. As an example that arguably may be against
common expectation, it is seen that neither the Gold nor the Kasami sets are
PTSC optimal.

We developed a new method for the optimization of binary spreading codes
under a rank-2 approximation of the inverse interference autocovariance matrix
where the rank-2-optimal binary code is obtained in lower than quadratic com-
plexity. Significant SINR performance improvement was demonstrated over the
common binary hard-limited eigenvector design which was seen to be equivalent
to the rank-1-optimal solution.

Our recent advances in the area of binary sequences for code-division multi-
plexing provide us with minimum total-squared-correlation (TSC) optimal sig-
nature sets for (almost) all signature lengths L and set sizes K. The sets are
scalable as long as K ≤ L (underloaded systems) and non-scalable when K > L
(overloaded systems); in general the non-scalable case requires signature re-
design/re-assignment as users enter or exit. We derive new lower bounds on
the conditional TSC of overloaded binary signature sets built on fixed full-load
TSC-optimal sets. Overloading is allowed to be as high as 100%. Scalable
designs that achieve the new bounds are then developed. To evaluate the per-
formance of the proposed designs, we compared the TSC of our constructions
to the unconditionally minimum achievable TSC values.

We derived new bounds on the aperiodic total squared correlation (ATSC) of
binary antipodal signature sets for any number of signatures K and any signa-
ture length L. We then presented optimal designs that achieve the new bounds
for several (K,L) cases. As an example, we proved that the familiar Gold and
(small or large) Kasami designs are not ATSC-optimal in general. The optimal
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signature set designs that we provide are, in this sense, better suited for asyn-
chronous and/or multipath code-division multiplexing applications.

We developed a binary signature design procedure to scale upwards over-
loaded minimum total-squared-correlation (TSC) binary signature sets. The
quality of the design is measured against the recently published binary TSC
bounds.

We revisited the classical problem of detecting a complex signal of unknown
amplitude in colored Gaussian noise in the context of adaptive detection with
limited training data via the auxiliary-vector (AV) filter estimation algorithm.
Based on statistical conditional optimization criteria, the iterative AV algo-
rithm starts from the target vector and, adding non-orthogonal auxiliary vector
components, generates an infinite sequence of tests that converges to the ideal
matched filter (MF) processor for any positive definite input autocorrelation ma-
trix. Computationally, the algorithm is a simple recursive procedure that avoids
explicit matrix inversion, decomposition, or diagonalization operations. When
the input autocorrelation matrix is replaced by a conventional sample-average
estimate, the algorithm effectively generates a sequence of MF estimators; their
bias converges rapidly to zero and the covariance trace rises slowly and asymp-
totically to the covariance trace of the familiar adaptive matched filter (AMF).
For finite data records, the generated sequence of estimators offers favorable
bias/covariance balance and members of the sequence are seen to outperform
in probability of detection (for any given false alarm rate) all known and tested
adaptive detectors (for example AMF and the multistage Wiener filter algo-
rithm). These issues are addressed in the context of joint space-time adaptive
processing for array radar.

We developed a new subspace direction-of-arrival (DOA) estimation proce-
dure that utilizes a non-eigenvector basis. Computation of the basis is carried
out by a modified version of the orthogonal auxiliary-vector (AV) filtering algo-
rithm. The procedure starts with the linear transformation of the array response
scanning vector by the input autocorrelation matrix. Then, successive orthogo-
nal maximum cross-correlation auxiliary vectors are calculated to form a basis
for the scanner-extended signal subspace. As a performance evaluation example,
our studies for uncorrelated sources demonstrated a gain in the order of 15dB
over MUSIC, 7dB over ESPRIT, and 3dB over the grid-search maximum likeli-
hood DOA estimator at probability of resolution 0.9 with a ten-element array
and reasonably small observation data records. Results for correlated sources
are reported as well.
An alternative form of the 8× 8 two-symbol decodable quasi-orthogonal space-
time block code (QO-STBC) that can be transmitted across either 4 or 8 an-
tennas with full rate and full diversity order is presented. For the 8 transmit
antenna system, we derive a new expression for the rotation angles that max-
imize the diversity (eigenvalue) product. In addition, we show that the previ-
ously proposed sum-eigenvalue maximization criterion for the design of rotation
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angles is not relevant/applicable and we suggest, as an alternative, minimum
eigenvalue maximization. Finally, working directly with the pairwise-error-
probability (PEP) upper-bound expression, we obtain new true PEP-upper-
bound optimal rotation angles. For 4 transmit antenna systems and correlated
channel fading conditions, we modify our PEP-upper-bound to account for chan-
nel correlation. Using the new PEP-upper-bound we obtain rotation angles that
maximize the diversity product and find, contrary to previous results, that the
optimized angles are independent of the correlation coefficient. Simulation stud-
ies initiated herein demonstrate the advantage of using the proposed codeword
across 4 transmit antennas when compared with other 4×4 QO-STBC transmis-
sion schemes. For 8 transmit antennas, the studies compare the three selected
rotation angle optimization criteria (diversity product, minimum eigenvalue,
PEP-upper-bound).

Finally, we considered the problem of signature waveform design for code
division medium-access-control (MAC) of wireless sensor networks (WSN). In
contrast to conventional randomly chosen orthogonal codes, we developed an
adaptive signature design strategy under the maximum pre-detection SINR (sig-
nal to interference plus noise ratio) criterion. The proposed algorithm utilizes
slowest descent cords of the optimization surface to move toward the optimum
solution and exhibits, upon eigenvector decomposition, linear computational
complexity with respect to signature length. Numerical and simulation studies
demonstrate the performance of the proposed method and offer comparisons
with conventional signature code sets.

11



II. Adaptive Optimization of Binary/Quaternary
CDMA Signatures in Asynchronous Multi-

path Environments

Part of the work reported in this section, namely adaptive optimization of binary
signatures, has been presented at IEEE MILCOM 2005, Atlantic City, NJ.

In direct-sequence code-division multiple-access (DS-CDMA) communica-
tion systems, multiple users/signals with individual identifying signature wave-
forms occupy the same channel in frequency and time. Alleviation of the result-
ing multiple-access-interference (MAI) problem relies on proper design of the
user signatures and receivers under a separate or joint consideration.

In the past, several optimization metrics and system configurations were con-
sidered. For example, [1],[2] minimize iteratively the total-squared-correlation
(TSC) of the signature set; convergence results are reported in [3]. A gen-
eralized version of the problem with a multiple base station configuration is
considered in [6] and [5]. Signatures that maximize user capacity for a given
signal-to-interference-plus-noise (SINR) level are sought in [6]. Under a mul-
tipath channel assumption, [7] carries out signature adaptation to maximize
the SINR at the output of the RAKE-filter receivers. The same problem is
considered in [8] with signature optimization over a reduced-rank vector space
and minimum-mean-square-error (MMSE) receivers. Signature adaptation for
multiuser MMSE minimization is described in [9].

In digital communication systems, it is necessary to have signature sets that
are defined over a finite alphabet. Yet, all previous design efforts described
above deal with complex (or real) field signatures. Recently, TSC-optimal binary
signature sets were reported for nearly all signature lengths and set sizes [10]-[4];
their sum capacity is identified in [5]. The sum capacity of several other binary
designs is calculated in [6].

A binary signature that has minimum sum of squared correlations with the
other multiple-access signature codes is also maximum SINR optimal under
MMSE filtering and synchronous, equal-power CDMA transmissions over (ad-
ditive white Gaussian noise) ideal Nyquist channels. This is certainly not the
case for asynchronous multiple access protocols and/or multipath channels. To
the best of the knowledge of the authors, the only finite-alphabet adaptive sig-
nature optimization effort for asynchronous/multipath channels reported in the
literature is [15]. In this present work, we attempt to build on and improve
upon [15] working in the binary {±1} or quaternary {±1,±i} field. Specifi-
cally, we develop a new adaptive signature design procedure that maximizes the
output SINR of the MMSE receiver filter. At nominal increase in computa-
tional cost, the proposed procedure offers significant performance improvement
over [15]. In fact, as seen in the studies included herein, our designs over the
restricted binary/quaternary field exhibit little performance loss in comparison
with the theoretical complex-field optimal solutions.
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A. Signal model

We consider a DS-CDMA system with K users and processing gain (sig-
nature length) L. The uplink (downlink) transmission from (to) user k, k =
0, 1, . . . ,K − 1, is denoted by

uk =

∞∑

m=1

bk(m)
√
Eksk (t−mT ) ej(2πfct+φk) (1)

where bk(m) ∈ {−1,+1} is the mth data bit (binary phase-shift-keying data
modulation), Ek is the total transmission energy, and φk is the carrier phase
with carrier frequency fc; sk(t) is the normalized unit-energy user signature
waveform with duration T given by

sk(t) =

L−1∑

l=0

sk(l)ψ(t− lTc) (2)

where sk(l), l = 0, 1, . . . , L−1, is the value of the lth chip of the spreading-code
vector of the kth user (sk is in {±1}L if binary or {±1,±i}L if quaternary),
ψ(t) is the chip waveform, and Tc = T

L is the chip period.
The user signals propagate over multipath additive white Gaussian noise

channels. The path coefficients are modeled as complex Gaussian random vari-
ables (Rayleigh amplitude and uniform phase) that are independent across paths
and user signals (if uplink transmissions are considered) and remain constant
during the signature adaptation period of several symbol intervals (quasi-static
fading). The compound received signal due to all users after channel “process-
ing” and carrier demodulation is given by

r(t) =

K−1∑

k=0

√
Ek

∑

m

bk(m)

N−1∑

n=0

αk,nsk (t−mT − nTc − τk) + n(t) (3)

where N denotes the number of resolvable paths, αk,n, k = 0, 1, . . . ,K− 1, n =
0, 1, . . . , N − 1, is the nth path, kth user, fading coefficient, τk ∈ [0, T ) is the
relative delay of user k with respect to user 0 with τ0 = 0, and n(t) is a complex
additive white Gaussian noise (AWGN) process.

Assuming synchronization with the signal of the user of interest k, after
chip-matched filtering of r(t) and sampling at the chip rate over a multipath
extended bit period we obtain the data vector rk(m)∈CL+N−1 of the form

rk(m) =
√
Ekbk(m)Hksk + zk + ik + nk, m = 1, 2, . . . , (4)

where zk∈CL+N−1 represents comprehensively multiple-access-interference (MAI)
to user k, ik∈CL+N−1 denotes channel induced inter-symbol-interference (ISI),
and nk∈C

L+N−1 is a zero mean complex Gaussian noise vector with covariance
matrix E

{
nkn

H
k

}
= σ2I (E{·} denotes statistical expectation and H is the con-

jugate transpose operator). In (4), Hksk ∈ CL+N−1 is the channel processed
signature of user k where
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Hk (L+N−1)×L
=




αk,0 0 . . . 0

αk,1 αk,0

.

.

.

.

.

.

.

.

.

.

.

.
αk,N−1 αk,N−2 . . . 0

0 αk,N−1 . . . 0

.

.

.

.

.

.

.

.

.
0 0 . . . αk,0
0 0 . . . αk,1

.

.

.

.

.

.

.

.

.
0 0 . . . αk,N−1




. (5)

For data bit detection purposes, we consider linear minimum-mean-square-
error (MMSE) filter receivers with sign-real-part detectors,

b̂k = sgn
(
Re
{
wH

MMSE,krk

})
, k = 0, 1, . . . ,K − 1, (6)

where wMMSE,k = cR−1
k Hksk ∈ CL+N−1, Rk

4
= E{rkr

H
k } and c > 0. The

output SINR of the (maximum SINR) filter wMMSE,k is a direct function of
the binary/quaternary signature sk:

SINRMMSE,k(sk) =

E

{∣∣∣wH
MMSE,k(

√
EkbkHksk)

∣∣∣
2
}

E

{∣∣∣wH
MMSE,k (zk + ik + nk)

∣∣∣
2
} = Ek

(
sH
k HH

k R̃−1
k Hksk

)

(7)
where R̃k is the autocorrelation matrix of the disturbance-only part of the input
vector defined by

R̃k
4
= E

{
(zk + ik + nk)(zk + ik + nk)H

}
. (8)

Viewing the pre-detection SINR expression in (7) as a function of the signa-
ture sk in {±1}L or {±1,±j}L motivates a maximization search over the binary
or quaternary field, respectively. In the following section, we present such an
adaptive signature optimization scheme.

B. The algorithm

A rather realistic assumption for CDMA communication systems is that
the ISI influence is negligible in comparison with the MAI and AWGN dis-
turbance. In this context, we can safely approximate R̃k in (8) by R̃k '
E
{
(zk + nk)(zk + nk)H

}
, which makes R̃k independent of sk and greatly sim-

plifies the problem of maximizing SINRMMSE,k(sk) with respect to sk. The
maximization criterion takes the form

sk = argmax
sk∈{±1}L or {±1,±i}L

{
sH
k HH

k R̃−1
k Hksk

}
(9)
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and HH
k R̃−1

k Hk is treated as an L×Lmatrix term that does not involve sk. Since

R̃k is Hermitian 4positive definite by definition, HH
k R̃−1

k Hk is also Hermitian
positive definite and can be Cholesky decomposed as first suggested in [15]:

AH
k Ak = HH

k R̃−1
k Hk (10)

where Ak is an L× L upper triangular matrix.
Upon Cholesky decomposition of HH

k R̃−1
k Hk, the quantity under maximiza-

tion in (9) becomes
sH
k AH

k Aksk = ‖Aksk‖2. (11)

Therefore, the objective is the selection of the signature (binary or quaternary)
that maximizes the norm of the vector

uk
4
= Aksk =

[
ak,1 ak,2 . . . ak,L

]




sk(1)
sk(2)

...
sk(L)


 (12)

where ak,j represents the jth column of Ak, j = 1, . . . , L. The norm-square in
question is given by

‖uk‖
2 = ‖ak,L‖2 + ‖ak,L−1‖

2 + . . . + ‖ak,1‖
2+

2Re{aH
k,L−1ak,Ls∗k(L − 1)sk(L)} + 2Re{aH

k,L−2ak,Ls∗k(L − 2)sk(L)} + . . .+

2Re{aH
k,1ak,Ls∗k(1)sk(L)} + 2Re{aH

k,L−2ak,L−1s
∗
k(L − 2)sk(L − 1)}+

2Re{aH
k,L−3ak,L−1s

∗
k(L − 3)sk(L − 1)} + . . .+

2Re{aH
k,1ak,L−1s

∗
k(1)sk(L − 1)} + . . . + 2Re{aH

k,1ak,2s
∗
k(1)sk(2)}

(13)

where ∗ denotes conjugation.
The proposed algorithm works in a sequential manner assigning values to

chips sk(L), sk(L− 1), . . . , sk(1) one at a time, in an attempt to maximize the
norm in (13). Since (13) is quadratic, we can start by assigning sk(L) = 1 with-
out loss of optimality. Having set sk(L), the value of sk(L− 1) that maximizes
(13) is given by

sk(L − 1) = argmax
sk(L−1)∈{±1} or {±1,±i}

{
Re{aH

k,L−1ak,Ls∗k(L − 1)sk(L)}+

Re{aH
k,L−2ak,L−1s

∗
k(L − 2)sk(L − 1)} + . . . +

Re{aH
k,1ak,L−1s

∗
k(1)sk(L − 1)} } . (14)

If we treat sk(1), . . . , sk(L − 2) as fixed unknown parameters, the value of
sk(L− 1) ∈ {±1} that maximizes (14) is

sk(L− 1) = sgn
{
Re{aH

k,L−1ak,L}sk(L)
}

; (15)

the value of sk(L− 1) ∈ {±1,±i} that maximizes (14) is

sk(L − 1) =






sgn
{

Re{aH
k,L−1ak,Lsk(L)}

}
, if

∣∣∣Re{aH
k,L−1ak,Lsk(L)}

∣∣∣ >∣∣∣Im{aH
k,L−1ak,Lsk(L)}

∣∣∣
sgn

{
Im{aH

k,L−1ak,Lsk(L)}
}

i, otherwise.

(16)
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We proceed similarly to calculate the values of the remaining chips sk(L−
j), j = 2, 3, . . . , L− 1, treating the lower indexed chips sk(1), sk(2), . . . , sk(L−
j − 1) as unknown fixed parameters. If sk(L− j) ∈ {±1}, j = 2, 3, . . . , L− 1,
then

sk(L − j) = sgn
{

Re{aH
k,L−jak,L}sk(L) + Re{aH

k,L−jak,L−1}sk(L − 1) + . . . +

Re{aH
k,L−jak,L−j+1}sk(L − j + 1)

}
;

(17)
if sk(L− j) ∈ {±1,±i}, j = 2, 3, . . . , L− 1, then

sk(L − j) =





sgn
{

Re
{
aH

k,L−jak,Lsk(L) + aH
k,L−jak,L−1sk(L − 1) + . . . +

aH
k,L−jak,L−j+1sk(L − j + 1)

}}
,

if
∣∣∣Re

{
aH

k,L−jak,Lsk(L) + . . . + aH
k,L−jak,L−j+1sk(L − j + 1)

}∣∣∣ >∣∣∣Im
{
aH

k,L−jak,Lsk(L) + . . . + aH
k,L−jak,L−j+1sk(L − j + 1)

}∣∣∣
sgn

{
Im

{
aH

k,L−jak,Lsk(L) + aH
k,L−jak,L−1sk(L − 1) + . . . +

aH
k,L−jak,L−j+1sk(L − j + 1)

}}
i, otherwise.

(18)

The above sequential scheme provides the first signature, s
(1)
k , in what we call

the signature candidate set. The complete candidate set is created as follows.
For binary signatures and n = 2, 3, . . . , L− 1, initialize

s
(n)
k (L− n+ 1) = −s

(1)
k (L− n+ 1) and s

(n)
k (j) = s

(1)
k (j), j = L− n+ 2, . . . , L,

(19)

and optimize recursively s
(n)
k (L − n), s

(n)
k (L − n − 1), . . . , s

(n)
k (1) by (17). For

quaternary sequences and n = 2, 3, . . . , L− 1, p = 1, 2, 3, initialize

s
(3(n−2)+p+1)
k (L− n+ 1) = ips

(1)
k (L− n+ 1) and s

(3(n−2)+p+1)
k (j) = s

(1)
k (j),

j = L− n+ 2, . . . , L,
(20)

and optimize recursively s
(3(n−2)+p+1)
k (L− n), s

(3(n−2)+p+1)
k (L− n− 1), . . . ,

s
(3(n−2)+p+1)
k (1) by (18).

The described algorithm gives a set of L − 1 candidate binary signatures
or 3(L − 2) + 1 quaternary signatures. Among them, we choose the one that
maximizes (13).

C. Computational complexity

The computational cost to obtain the first signature of the candidate set,

s
(1)
k , is O(L3). At first sight, it may seem that to fill in the candidate set

with L − 1 binary signatures or 3(L − 2) + 1 quaternary signatures amounts
to O(L4). Yet, taking advantage of the inherent redundancy in (19) or (20)
we can keep the complexity at O(L3). Consider, for example, the binary sig-
nature case and calculate the above-the-diagonal part of the L × L matrix
T = Re{AH

k Ak}, Ti,j , i, j = 1, . . . , L, i < j. The entry Ti,j , i < j, corresponds
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to the criterion function term Re{aH
k,iak,j}sk(i)sk(j) in (13). Maximization of

(13) is equivalent to finding an assignment for sk(l), l = 1, . . . , L, that maximizes
the sum of the matrix elements

∑
i<j Ti,j (this problem falls under the class of

quadratic integer programming problems which are known to be NP-hard [16]).
Once Ti,j , i < j, are calculated, we can form the first signature of the candidate
set via the iteration

s
(1)
k (L− l) = sgn{TL−l,L−l+1s

(1)
k (L− l + 1) + . . .+ TL−l, Ls

(1)
k (L)},

l = 1, 2, . . . , L− 1, s
(1)
k (L) = 1.

(21)

Then, the other candidate set signatures s
(n)
k , n = 2, 3, . . . , L−1, are calculated

as follows:

s
(n)
k (j) = s

(1)
k (j), j = L− n+ 2, . . . , L, s

(n)
k (L− n+ 1) = −s

(1)
k (L− n+ 1),

s
(n)
k (L− l) = sgn{TL−l,L−l+1s

(n)
k (L− l + 1) + . . .+ TL−l, Ls

(n)
k (L)},

l = n, . . . , L− 1.
(22)

The total computational cost of the algorithm as implemented above is the
cost of the Cholesky decomposition, plus calculation of Ti,j , i < j, plus the cost
of iterations (21) and (22). That is,

Computational complexity =
L3

6
+

L(L + 1)(L − 1)

6
+

L(L − 1)

2
+

L(L − 1)(2L − 1)

6
≡ O(L3).

(23)

For quaternary signatures the cost of (22) increases by a factor of 3, but the
overall complexity remains O(L3). In either case, binary or quaternary, the
trade-off in keeping the computational complexity at O(L3) (instead of O(L4))
is the space requirement of O(L2) for the matrix T. We conclude that the
proposed signature optimization procedure has little overhead in comparison
with [15]. In fact, at a higher level of system abstraction both schemes are
bounded only by the cost of inverting R̃k, O

(
(L+N − 1)3

)
.

D. Simulation studies

In this section, we compare the performance of the proposed signature opti-
mization algorithm (binary and quaternary) against the following benchmarks:
(i) The maximum-eigenvalue eigenvector of HH

k R̃−1
k Hk, denoted by max-EV,

which is the theoretical maximum SINR signature solution over the CL field (cf.
(7)); (ii) the binary and (iii) quaternary minimum Euclidean distance quantized
versions of max-EV; and (iv) the algorithm in [15] where binary conditional
maximization of a modified version of (11) was considered1.

In Fig. 1, we consider the uplink multipath DS-CDMA signal model of Sec-
tion II with spreading gain L = 16 and we assume the presence of K = 8 users.
Each user signal experiences N = 3 paths with coefficents (zero-mean complex
Gaussian random variables) of equal power. Then, following the notation of

1In [15], ad hoc posterior bit flipping tests after conditional maximization were executed
that improved the final reported SINR performance. This is not considered/accounted for
herein.
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Section II, the total average received SNR for user k, k = 0, 1, . . . , 7, over all
paths is

SNRk
4
=
Ek

∑2
n=0E

{
|αk,n|2

}

σ2
=
EkE

{
||αk||2

}

σ2
. (24)

We set SNR0−2 = 8dB, SNR3−5 = 9dB, SNR6,7 = 10dB. We initialize the signa-
ture set s0, s1, . . . , s7 arbitrarily and execute each signature set design algorithm
sequentially user-after-user in what we call a multiuser adaptation cycle. Several
multiuser adaptation cycles are carried out. A fixed Walsh-Hadamard signature
assignment is also included in the study to challenge, potentially, the notion of
signature adaptivity. In Fig. 1, we plot the pre-detection SINR of a representa-
tive user per adaptation cycle averaged over 1, 000 random channel realizations
and initial signature assignments. All algorithms are seen to converge in about
three cycles. The proposed procedure offers superior performance for both bi-
nary and quaternary alphabets. The (non-adaptive) Walsh-Hadamard signature
assignment, as expected arguably, exhibits rather poor performance. It is inter-
esting to observe that under the proposed optimization scheme, upgrading the
signature domain from binary to quaternary provides close to 0.8dB gain, while
upgrading the domain from quaternary to the full complex field provides only
0.52dB additional gain.

In Fig. 2, we repeat the same study for a system with processing gain
L = 31 and K = 16 users with SNR values SNR0−3 = 8dB, SNR4−7 = 9dB,
SNR8−11 = 10dB, SNR12−15 = 11dB. A (non-adaptive) Gold signature assign-
ment is included in the comparisons which, arguably contrary to common belief,
fails disappointingly to withstand the asynchronous multipath environment. In
terms of the adaptive signature design schemes, the conclusions are similar to
the ones drawn from Fig. 1.

In Fig. 3, we repeat the study of Fig. 2 under finite sample support esti-
mation of the signal autocorrelation matrix and plot the average pre-detection
SINR against data record size after the third multiuser adaptation cycle. The
dominance of the proposed signature design scheme (that does not rely on eigen-
vector estimates) is now even more prominent. In fact, both Cholesky-based
algorithms (the proposed binary/quaternary and the binary conditional maxi-
mization procedure of [15]) experience lower performance degradation than the
eigen-decomposition-based schemes.

Finally, to illustrate the performance of the signature design algorithms un-
der single-user adaptation, in Fig. 4 we plot the bit-error-rate (BER) of a repre-
sentative user versus SNR when the signal autocorrelation matrix is estimated
from 3(L + N − 1) samples and all interferers have fixed, non-adapted Gold
signature assignments. The comparative findings are no different than those
obtained in Figs. 1-3 under the SINR metric and multiuser adaptation.

E. Conclusions

We considered the problem of adaptive signature optimization for CDMA
communications in asynchronous mode of operation and/or multipath signal
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propagation environments. Contrary to past and current research literature, we
pursued finite-alphabet signature designs, binary and quaternary, in particular.

Finite-alphabet optimization of signatures is NP-hard. The proposed subop-
timal algorithm described and studied in this report has computational complex-
ity O(L3) and storage complexity O(L2) where L is the signature length under
consideration. The algorithm can be viewed as a truly practical means for either
single-user signature optimization or multi-user signature set optimization since
no exchange of information between users is required.

Performance-wise, it is satisfying -and somewhat surprising arguably- to see
that the quaternary adaptive designs are less than 1dB away in attained SINR
from the theoretical complex-field-optimal signatures. Being a Cholesky-based
procedure, the algorithm has favorable small-sample-support behavior; 3L or 4L
data vectors suffice for effective adaptation, which is well within the coherence
time of common commercial wireless channels.
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Fig. 1: Average pre-detection SINR for a representative user versus multiuser
adaptation cycle (L = 16, K = 8).
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Fig. 2: Average pre-detection SINR for a representative user versus multiuser
adaptation cycle (L = 31, K = 16).
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III. New Bounds on the Periodic Total Squared

Correlation of Binary Signature Sets and
Optimal Designs

This work has been presented at IEEE MILCOM 2005, Atlantic City, NJ.
In code-division multiplexing applications, for example direct-sequence code-

division multiple-access (DS-CDMA) cellular communications systems, each of
the K participating signals/users is equipped with a unique identifying signature
vector sk ∈ CL, ||sk|| = 1, k = 1, 2, . . . ,K. All signatures put together in the
form of a matrix define what we call the signature set

S 4
= [s1 s2 . . . sK ] ∈ C

L×K . (25)

In synchronous code-division multiplexing transmissions over well behaved
Nyquist channels, we are interested in using a signature set with the smallest
possible total squared correlation (TSC) value [2]-[7]

TSC(S)
4
=

K∑

i=1

K∑

j=1

∣∣sH
i sj

∣∣2 (26)

where H denotes the Hermitian operator. For complex/real-valued signature

sets S ∈ CL×K or RL×K , if K ≥ L, TSC(S) ≥ K2

L [1] (of course, TSC(S) ≥ K

if K < L). Overloaded (K ≥ L) sets with TSC equal to K2

L have been known
as Welch-bound-equality (WBE) sets. Algorithms and studies for the design of
complex or real WBE signature sets can be found in [3]-[7]. In digital trans-
mission systems, however, it is necessary to have finite-alphabet signature sets.
Recently, new bounds were derived on the TSC of binary antipodal signature
sets together with optimal designs for arbitrary signature lengths and set sizes
[2]-[4]. The sum capacity, total asymptotic efficiency, and maximum squared
correlation of minimum-TSC optimal binary sets were evaluated in [5]. The
sum capacity of several other signature set designs under potentially a binary
or quaternary alphabet was examined in [6]. All developments that follow in
this present report refer to binary signature sets.

When asynchronous code-division multiplexing is attempted and/or the chan-
nel exhibits multipath behavior, apart from the total squared correlation be-
tween signatures we are also concerned about the individual periodic (cyclic)
auto-correlation and the periodic (cyclic) cross-correlation values [8]. For nota-

tional simplicity, let sk|l denote the cyclic right-shifted version of sk ∈ {±1}L
, k =

1, 2, . . . ,K, by l bit positions, l = 0, 1, 2, . . . (hence, sk|0 = sk|L = . . . = sk).

First, we define the cyclic extension matrix Sc ∈ {±1}L×KL
of the signature set

S ∈ {±1}L×K
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Sc
4
=
[
s1|0 s2|0 . . . sK|0 s1|1 s2|1 . . . sK|1 . . . . . . s1|L−1 s2|L−1 . . . sK|L−1

]
. (27)

Then, we define the periodic total squared correlation (PTSC) of the signature
set S as the total squared correlation (TSC) of the matrix Sc

PTSC(S)
4
= TSC(Sc). (28)

Since,

sT
i|l1

sj|l2 = sT
i|0sj|l2−l1 = sT

j|0si|L−(l2−l1), l1 ≤ l2, l1, l2 = 0, 1, 2, . . . , L−1, i, j = 1, 2, . . . ,K,

(29)
where T denotes the transpose operator, we can calculate

PTSC(S) =





KL3 + 2L
∑K

k=1

∑L−1
2

l=1

∣∣sT
k sk|l

∣∣2 +

2L
∑K

i=1

∑K
j=1,i<j

∑L−1
l=0

∣∣sT
i sj|l

∣∣2 , L ≡ 1 (mod 2)

KL3 + L
∑K

k=1

[
2
∑L

2
−1

l=1

∣∣sT
k sk|l

∣∣2 +
∣∣∣sT

k s
k| L

2

∣∣∣
2
]

+

2L
∑K

i=1

∑K
j=1,i<j

∑L−1
l=0

∣∣sT
i sj|l

∣∣2 , L ≡ 0 (mod 2).

(30)

The first two terms of the PTSC expressions (for odd or even L) contain all
periodic auto-correlation contributions. The third, triple summation term con-
tains all periodic cross-correlation contributions. Minimizing PTSC addresses
the problem of minimizing periodic auto- and cross-correlations jointly. In the
present work, we derive new lower bounds on the PTSC of binary signature sets
for all possible values of K (number of signatures) and L (signature length).
Then, we derive optimal designs for several (K, L) pair cases. The designs are
based on Hadamard matrix transformations (an approach followed in [2] and
[14], for example) and serve as proof-by-construction for the tightness of the
pertinent PTSC bounds.

A. New Bounds on the PTSC of Binary Antipodal Signa-
ture Sets

Consider the cyclic extension matrix Sc ∈ {±1}L×KL
in (137) and denote its

ith row by

di
4
=
[
s1|0(i) . . . sK|0(i) s1|1(i) . . . sK|1(i) . . . . . . s1|L−1(i) . . . sK|L−1(i)

]T
, i = 1, 2, . . . , L,

(31)

where sk|l(i), k = 1, 2, . . . ,K, l = 0, 2, . . . , L − 1, refers to the ith element of
vector sk|l. Then, by (28) and the “row-column equivalence” for the TSC metric
of matrices [7],

PTSC(S) = K2L3 +
∑L

i=1

∑L
j=1,j 6=i

∣∣dT
i dj

∣∣2 . (32)

Our goal is to obtain a bound on the term
∑L

i=1

∑L
j=1,j 6=i

∣∣dT
i dj

∣∣2 for all (K,L)
cases. For this purpose, we will make use of the following theorem.
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Theorem 1 (On the Properties of Cyclic Extension Matrices) Let Sc =

[d1 d2 . . .dL]
T
, di ∈ {±1}KL

, i = 1, 2, . . . , L, be the cyclic extension matrix
of S = [s1 s2 . . . sK ] , sk ∈ {±1}L, k = 1, 2, . . . ,K.
(i) Then,

dT
i dj =

K∑

k=1

sT
k sk|j−i, i, j = 1, 2, . . . , L, (33)

and

L∑

i=1

L∑

j=1,j 6=i

∣∣∣dT
i dj

∣∣∣
2

=






2L
∑L−1

2
+1

j=2

∣∣dT
1 dj

∣∣2 , L ≡ 1 (mod 2)

L

[
2
∑L

2
j=2

∣∣dT
1 dj

∣∣2 +
∣∣∣dT

1 dL
2

+1

∣∣∣
2
]

, L ≡ 0 (mod 2).
(34)

(ii) If KL 6≡ 0 (mod 4),
∣∣dT

1 dj

∣∣ 6= 0 for all j = 2, 3, . . . , L. Specifically, if

KL ≡ 1 (mod 2),
∣∣dT

1 dj

∣∣ ≡ 1 (mod 2) for all j = 2, 3, . . . , L; ifKL ≡ 2 (mod 4),∣∣dT
1 dj

∣∣ ≡ 2 (mod 4) for all j = 2, 3, . . . , L. 2

From (32) and Theorem 1, Part (i), the PTSC of a binary signature set S equals

PTSC(S) =





K2L3 + 2L
∑L−1

2
+1

j=2

∣∣dT
1 dj

∣∣2 , L ≡ 1 (mod 2)

K2L3 + L

[
2
∑L

2
j=2

∣∣dT
1 dj

∣∣2 +
∣∣∣dT

1 dL
2

+1

∣∣∣
2
]

, L ≡ 0 (mod 2)
(35)

and —interestingly— depends only on the sum of the periodic auto-correlations

of the signatures for each shift (dT
1 dj =

∑K
k=1 sT

k sk|j−1, j = 2, 3, . . . , L). By
(35) and Theorem 1, Part (ii),

PTSC(S) ≥





K2L3 + 2L
(

L−1
2

)
, L ≡ 1 (mod 2), K ≡ 1 (mod 2)

K2L3 + 8L
(

L−1
2

)
, L ≡ 1 (mod 2), K ≡ 2 (mod 4)

K2L3 + 8L
(

L
2
− 1
)

+ 4L, L ≡ 2 (mod 4), K ≡ 1 (mod 2).
(36)

Simplifying/compressing (36) and adding the entry KL ≡ 0 (mod 4), we con-
clude

PTSC(S) ≥





K2L3, KL ≡ 0 (mod 4)
K2L3 + 4L(L− 1), KL ≡ 2 (mod 4)
K2L3 + L(L− 1), KL ≡ 1 (mod 2).

(37)

Expression (37) defines our new bounds on the periodic total squared correlation
of binary antipodal signature sets. In the following section, we develop signature
set designs that meet these bounds with equality.

B. Design of Minimum PTSC Binary Antipodal Signature
Sets

In view of the formulation introduced in Section I, minimum PTSC design of a
signature set S is equivalent to minimum TSC design of an extension matrix Sc.
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In the following, HN refers to a normalized Hadamard matrix2 of size N with
columns hi, i = 1, 2, . . . , N . Vec[A] denotes the standard column-by-column
vectorization operation on matrix A and diag{b} is the square diagonal matrix
with the elements of vector b on its diagonal. Finally, we find it useful to in-
troduce the column replication operator ∧p, p = 1, 2, . . . . If A = [a1 a2 . . . aJ ],

then A∧p 4
= [a1 a1 . . .a1︸ ︷︷ ︸

p

a2 a2 . . . a2︸ ︷︷ ︸
p

. . .aJ aJ . . . aJ︸ ︷︷ ︸
p

].

Below, we provide PTSC-optimal signature set designs under several K, L
cases for both underloaded (K ≤ L) and overloaded (K > L) systems.

Case 1: Underloaded Systems (K ≤ L)

Case 1: K ≡ 0 (mod 2), L = 2n, n = 1, 2, . . .

Calculate N = 4
⌊

K
4

⌋
(K is rounded down to the nearest multiple of four).

Decompose N into N = N1 + N2 + . . . +NJ where N1 > N2 > . . . > NJ are
powers of 2. Obtain a Hadamard matrix HN1 and create the initial template
matrix

ΘL×N1 = [HN1 HN1 . . .HN1︸ ︷︷ ︸
L

N1

]T . (38)

Define the diagonal “correction” matrices

Ci = diag





Vec



(

Vec [HN1 ]
T∧N

i−1
1

)T
∧ L

N
i+1
1







, i = 1, 2, . . . , blogN1L− 1c ,

(39)
and the final diagonal correction matrix

X = diag





Vec


Vec


h1 h2 . . .h L

N
blogN1

Lc
1



∧N

blogN1
Lc−1

1







. (40)

Calculate

ST
1 = ΘT



blogN1L−1c∏

i=1

Ci


X. (41)

Repeat (38)-(41) for {Nj}J
j=2 to create {Sj}J

j=2. Each Sj , j = 1, 2, . . . J , is an
L×Nj PTSC-optimal set. Concatenate to form

SL×N = [S1 S2 . . .SJ ] . (42)

2We recall that a Hadamard matrix HN is an N × N matrix with elements +1 or −1 and
orthogonal columns, HT

NHN = NIN where IN is the size-N identity matrix. A necessary
condition for a Hadamard matrix to exist is that its size is a multiple of four, except for the
trivial cases of size one or two.
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If K ≡ 0 (mod 4), then S in (42) is an L×K PTSC-optimal signature set. If
K ≡ 2 (mod 4), design PTSC-optimal sets S ′

L×(K−2) and S ′′

L×2 as above and

concatenate3;
[
S ′ S ′′

]
is an L×K PTSC-optimal signature set. 2

Case 2a: K ≡ 0 (mod 8) and K ≥ 8
⌈√

4L
8

⌉
, L 6≡ 2 (mod 4) and L 6= 2n, n =

1, 2, . . .

2b: K ≡ 0 (mod 8) and 8
⌈√

4L
8

⌉
≤ K < 4

⌈
L
8

⌉
, L ≡ 2 (mod 4)

Calculate N = K
2 , q =

⌊
L
N

⌋
, and r = L − N

⌊
L
N

⌋
. Obtain a Hadamard

matrix HN and create the initial template matrix

ΘL×N = [HN HN . . .HN︸ ︷︷ ︸
q

h1 h2 . . .hr]
T . (43)

If r 6= 0, define the diagonal correction matrices

Ci = diag





Vec


h1 h2 . . .hq



(−1)i+1 (−1)i+1 . . . (−1)i+1

︸ ︷︷ ︸
r




T






, i = 1, 2.

(44)
If r = 0, define the diagonal correction matrices as follows:

Ci = diag
{
Vec

[[
(−1)i+1h1

]
h2 . . .hq

]}
, i = 1, 2. (45)

Calculate ST
i = ΘT Ci, i = 1, 2, and concatenate to form the PTSC-optimal

set
SL×K = [S1 S2] . (46)

2

Case 3a: K ≡ 0 (mod 4) and 4
⌈√

L
4

⌉
≤ K < 8

⌈√
4L
8

⌉
, L ≡ 0 (mod K)

3b: K ≡ 4 (mod 8) and K > 8
⌈√

4L
8

⌉
, L ≡ 0 (mod K)

Calculate q = L
K . Obtain a Hadamard matrix HK and create the initial

template matrix
ΘL×K = [HK HK . . .HK︸ ︷︷ ︸

q

]T . (47)

Define the diagonal correction matrix

C = diag {Vec [h1 h2 . . .hq]} (48)

and calculate the PTSC-optimal set

ST = ΘT C. (49)

3Notice that repetitive concatenation of the S
′′
L×2 PTSC-optimal set would yield, math-

ematically, PTSC-optimal sets for any L × K-even dimensions; it would do so, however, via
signature repetition which is unacceptable application-wise.
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2

Case 4: K ≡ 0 (mod 4) and K ≥ 4
⌈

L
8

⌉
, L ≡ 2 (mod 4)

Calculate r = L−K. Obtain a Hadamard matrix HK and create the initial
template matrix

ΘL×K = [HK h1 h2 . . .hr]
T . (50)

Define the diagonal correction matrix

C = diag





Vec






1 1 . . . 1︸ ︷︷ ︸
K




T 

1 − 1 1 − 1 . . . 1 − 1︸ ︷︷ ︸
r




T






. (51)

Calculate the PTSC-optimal set

ST = ΘT C. (52)

2

Some of our designs that follow utilize known cyclic Hadamard sequences
gM ∈ {±1}M

of length M ≡ 3 (mod 4) that have ideal two-level periodic auto-
correlation,

gT
MgM |m =

{
M, m = 0
−1, m = 1, 2, . . . ,M − 1,

(53)

and have been used in the past to construct cyclic Hadamard matrices [16]-[18].
In particular, if

M
4
= {M : (i) M prime congruent to 3 (mod 4) or

(ii) M congruent to 3 (mod 4) and product of “twin primes” p and p + 2 or
(iii) M = 2n − 1, n = 2, 3, . . . } ,

(54)

then there exists at least one systematic method [16]-[18] to construct such a
sequence gM when M ∈ M. We continue with the presentation of the design
cases.

Case 5: K ≡ 2 (mod 8) and K ≥ 8
⌈√

4L
8

⌉
+ 2, L ∈ M

Obtain the signature set S ′

L×(K−2) from (43)-(46) and form the PTSC-
optimal set

SL×K =
[
S ′

gL gL|1
]
. (55)

2

Case 6: K ≡ 1 (mod 8), K ≥ 8
⌈√

4L
8

⌉
+ 1 and K 6= L− 2, L ∈ M

Obtain the signature set S ′

L×(K−1) from (43)-(46) and form the PTSC-
optimal set

SL×K =
[
S ′

gL

]
. (56)
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2

Case 7: K = L, L ∈ M
Set N = K + 1, obtain a Hadamard matrix HN and remove its first row

and column. Call the resulting size-K matrix H
′

N . “Correct” with the diagonal
matrix

C = diag {gL} (57)

to obtain the PTSC-optimal set

ST = H
′

NC. (58)

2

Case 8: K ∈ {L− 4, L− 2} , L ∈ M
Design directly the PTSC-optimal set

SL×K =






1 1 . . . 1︸ ︷︷ ︸
L−1

− 1




T

gL gL|1 . . .gL|K−2


 . (59)

2

Next, we proceed with the presentation of our optimal designs for overloaded
systems.

Case 2: Overloaded Systems (K > L)

Case 1: K ≡ 0 (mod 4)
Obtain a Hadamard matrix HK and trivially design the PTSC-optimal set

SL×K = [h1 h2 . . .hL]
T
. (60)

Hence, interestingly, overloaded direct Hadamard designs are optimal under
both the PTSC and TSC [2] metrics. 2

Case 2: K ≡ 2 (mod 4), L ∈ M
Set N = K − 2, obtain a Hadamard matrix HN and keep only the first L

columns. Call the resulting matrix H
′

N . Then,

SL×K =
[
H

′T

N gL gL|1
]

(61)

is PTSC-optimal. 2

Case 3: K ≡ 1 (mod 4), L ∈ M
Set N = K − 1, obtain a Hadamard matrix HN and keep only the first L

columns. Call the resulting matrix H
′

N . Then,

SL×K =
[
H

′T

N gL

]
(62)
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is PTSC-optimal. 2

Case 4: K ≡ 3 (mod 4), L ∈ M
Set N = K + 1, obtain a Hadamard matrix HN and remove the first row

and N−L columns. Call the resulting matrix H
′

N . “Correct” with the diagonal
matrix

C = diag {gL} (63)

to obtain the PTSC-optimal set

ST = H
′

NC. (64)

2

In the following section, we discuss these design findings and present some
examples.

C. Discussion and Examples

The optimal design cases presented in the previous section constitute proof-by-
construction of the tightness of the corresponding PTSC bounds developed in
Section II. To acquire a quantitative feeling of the coverage of the presented
designs, if we restrict the domain of K,L to {1, 2, . . . , 256} (at present, it does
not appear of practical interest to consider code-division applications outside
this parameter range), we can calculate that Underloaded Cases 1 through 8
and Overloaded Cases 1 through 4 together represent 26.61% of all possible
combination pairs (K,L) ∈ {1, 2, . . . , 256}2

. Certainly, tightness of the bounds
and optimal PTSC designs under the remaining cases is an important open
research problem.

Direct comparison of our PTSC optimal designs with the TSC bounds and
optimal sets in [2] shows that Underloaded Case 1 when K is a power of 2,
Underloaded Case 3 and Overloaded Cases 1, 3, and 4 are doubly, both PTSC
and TSC, optimal. Furthermore, we can now establish that the familiar Gold
sets [15], which have been widely used for their periodic correlation properties
[8], are not PTSC optimal (ironically, Gold sets were shown to be TSC opti-
mal in [2]). To that respect, we recall [8], [15] that Gold sets are defined for
K ≤ L+ 2, L = 2n − 1, n ≥ 3 and n 6≡ 0 (mod 4), and for every i 6= j, i, j =
1, . . . ,K, the periodic signature cross-correlations

∣∣sT
i sj|l

∣∣ , l = 0, . . . , L − 1,

have value −1, −2bn+2
2 c−1, or 2bn+2

2 c−1 with frequency of occurrence (“cor-

relation spectrum” [8]) 2n − 2n−α − 1, 2n−α−1 − 2
n−α−2

2 and 2n−α−1 + 2
n−α−2

2 ,
respectively, where α = 1 if n ≡ 1 (mod 2) and α = 2 if n ≡ 2 (mod 4). Con-
sider such a Gold set GL×K = [s1 s2 . . . sK ] where s1, s2 are the two preferred
m-sequences [21] and call its cyclic extension matrix Gc. By (28) and (30),

PTSC(G) = TSC(Gc) = KL3+2L

K∑

k=1

L−1
2∑

l=1

∣∣sT
k sk|l

∣∣2+2L

K∑

i=1

K∑

j=1, i<j

L−1∑

l=0

∣∣sT
i sj|l

∣∣2

(65)
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and utilizing the cross-correlation spectrum information

∑L−1
l=0

∣∣sT
i sj|l

∣∣2 =
[
(2n − 2n−α − 1) (−1)2 +

(
2n−α−1 − 2

n−α−2
2

)

(
−2bn+2

2 c − 1
)2

+
(
2n−α−1 + 2

n−α−2
2

)(
2bn+2

2 c − 1
)2
]

= (2n − 1)2 + 2n − 2.
(66)

Regarding the auto-correlation contributions, if k = 1, 2,

2

L−1
2∑

l=1

∣∣∣sT
k sk|l

∣∣∣
2

= 2n − 2; (67)

if k > 2,

2

L−1
2∑

l=1

∣∣sT
k sk|l

∣∣2 > (−1)2 +
(
−2bn+2

2 c − 1
)2

+
(
2bn+2

2 c − 1
)2

≥ 2n+2 + 3. (68)

For K ≤ 2, combining (65), (66), and (67) we calculate

PTSC(G) = KL3 + KL (2n − 2) + LK(K − 1)
[
(2n − 1)2 + 2n − 2

]

= K2L3 + KL(L − 1) + LK(K − 1)(L − 1).
(69)

For K > 2, combining (65), (66), and (68) we obtain

PTSC(G) > KL3 + 2L(2n − 2) + (K − 2)L
(
2n+2 + 3

)

+LK(K − 1)
[
(2n − 1)2 + 2n − 2

]

= K2L3 + 2L(L − 1) + (K − 2)L(4L + 7) + LK(K − 1)(L − 1)
> K2L3 + K2L(L − 1).

(70)

Expression (69) for K = 2 and expression (70) for K > 2 are strictly greater
than the lower bounds of Section II which are achievable for some Gold-compatible
values (K,L) as seen in Section III. Fig. 5 shows as an example a (16, 31) Gold
set which has PTSC = 8213760 together with our optimal (16, 31) design (under
Underloaded Case 2a) with minimum PTSC = K2L3 = 7626496.

Other signature sets well known for their periodic correlation properties
are the small and large-set Kasami designs [8], [16]. We recall that small-set
Kasami designs are defined for lengths L = 2n−1, n ≡ 0 (mod 2), and have size
K ≤ 2

n
2 . The attained periodic cross-correlation values are −1, −2

n
2 −1, 2

n
2 −1,

but their frequency of occurrence is not known in closed form as a function of
n. Fig. 6 presents a (2, 15) small-set Kasami design with calculated PTSC =
15300 together with our optimal (2, 15) design (under Underloaded Case 5) with
minimum PTSC = K2L3 + 4L(L− 1) = 14340. We directly conclude that, in
general, small-set Kasami designs are not PTSC optimal.

Large-set Kasami designs [8], [16] are defined for L = 2n − 1 and even n. If
n ≡ 2 (mod 4), K ≤ 2

n
2 (2n + 1); if n ≡ 0 (mod 4), K ≤ 2

n
2 (2n + 1) − 1. Fig.

7(a) shows an (8, 15) large-set Kasami design that has PTSC = 227040. Fig.
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7(b) shows our PTSC-optimal set Sopt
15×8 designed under Underloaded Case 2a

with minimum PTSC value 216000. Hence, in general, large-set Kasami are not
optimal either.

We conclude this section with an example of an overloaded PTSC-optimal
design Sopt

31×42 given in Fig. 8. The set is designed under our Overloaded Case
2 procedure and has minimum PTSC value 52555044.

D. Conclusions

We derived bounds on the periodic (cyclic) total squared correlation (PTSC) of
binary signature sets for any signature length L and set size K and provided
optimal constructions for a variety of K,L values that establish the tightness
of the corresponding bounds. The constructions include underloaded (K ≤ L)
and overloaded (K > L) design cases and cover, as an example, 26.61% of all
possible combinations of K,L in {1, 2, . . . , 256}.

Side results of the presented research include derivation of a lower bound
on the PTSC of Gold sets which is seen to be strictly larger than the gen-
eral derived bounds. PTSC-optimal constructions described herein for Gold-
compatible (K,L) pairs, as well as small and large-set Kasami, establish that
neither the Gold nor the Kasami sets are PTSC-optimal in general. In view
of these findings, the developed PTSC-optimal sets take precedence whenever
the periodic correlation properties of signatures is of concern in code-division
multiplexing applications.
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G31×16 =




− + − − − − + + + + + − − + − −
− + + − − − − + + + + + − − + −
− + + + − − − − + + + + + − − +
− − + + + − − − − + + + + + − −
− + − + + + − − − − + + + + + −
− + + − + + + − − − − + + + + +
+ + − − + − − − + + + + − − − −
− − + + + − + + + − − − − + + +
+ + + − − − + − − − + + + + − −
− + + − + + + − + + + − − − − +
− + + + − + + + − + + + − − − −
+ − − − − + − − − + − − − + + +
+ − + − − − + − − − + − − − + +
+ − + + − − − + − − − + − − − +
− − − − − + + + − + + + − + + +
− − − − − − + + + − + + + − + +
− + − − − − − + + + − + + + − +
+ − − + + + + + − − − + − − − +
− − − + − − − − − + + + − + + +
− + − − + − − − − − + + + − + +
− − + − − + − − − − − + + + − +
− − − + − − + − − − − − + + + −
− + − − + − − + − − − − − + + +
+ + − + + − + + − + + + + + − −
+ + − − + + − + + − + + + + + −
+ + − − − + + − + + − + + + + +
+ + − − − − + + − + + − + + + +
+ − − − − − − + + − + + − + + +
− − − + + + + + − − + − − + − −
+ − + + − − − − − + + − + + − +
− − − − − + + + + + − − + − − +




(a)

Sopt
31×16 =




+ + + + + + + + + + + + + + + +
+ − + − + − + − + − + − + − + −
+ + − − + + − − + + − − + + − −
+ − − + + − − + + − − + + − − +
+ + + + − − − − + + + + − − − −
+ − + − − + − + + − + − − + − +
+ + − − − − + + + + − − − − + +
+ − − + − + + − + − − + − + + −
+ + + + + + + + + + + + + + + +
− + − + − + − + − + − + − + − +
+ + − − + + − − + + − − + + − −
− + + − − + + − − + + − − + + −
+ + + + − − − − + + + + − − − −
− + − + + − + − − + − + + − + −
+ + − − − − + + + + − − − − + +
− + + − + − − + − + + − + − − +
+ + + + + + + + + + + + + + + +
+ − + − + − + − + − + − + − + −
− − + + − − + + − − + + − − + +
− + + − − + + − − + + − − + + −
+ + + + − − − − + + + + − − − −
+ − + − − + − + + − + − − + − +
− − + + + + − − − − + + + + − −
− + + − + − − + − + + − + − − +
+ + + + + + + + − − − − − − − −
+ − + − + − + − − + − + − + − +
+ + − − + + − − − − + + − − + +
+ − − + + − − + − + + − − + + −
+ + + + − − − − − − − − + + + +
+ − + − − + − + − + − + + − + −
+ + − − − − + + − − + + + + − −




(b)

Fig. 5. (a) G31×16 Gold set with PTSC = 8213760. (b) Optimal signature
set Sopt

31×16 designed under Underloaded Case 2a with PTSC = (16)2(31)3 =
7626496.
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Kss
15×2 =




− −
− +
− +
+ +
− +
− +
+ +
+ −
− +
+ +
− +
+ −
+ +
+ −
+ −




(a)

Sopt
15×2 =




− +
+ +
+ +
+ −
− +
+ +
+ −
− −
− +
+ −
− +
+ −
− −
− −
− −




(b)

Fig. 6. (a) Kss
15×2 small-set Kasami with PTSC = 15300. (b) Optimal signa-

ture set Sopt
15×2 designed under Underloaded Case 5 with PTSC = (2)2(15)3 +

4(15)(14) = 14340.
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Kls
15×8 =




+ − − + + − − +
+ + − + − − + −
− + − − + − + +
− − − + + − − +
+ + − + − + − +
− − + + − − + +
− − − + + + + −
− − + − + + − +
− + − − + + − −
− − − + + − − +
+ − + − + − + −
+ − + + − + − −
− − − + + + + −
− − + − + − + −
+ − + + − − + +




(a)

Sopt
15×8 =




+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + + + + +
− + − + − + − +
+ + − − + + − −
− + + − − + + −
+ + + + + + + +
+ − + − + − + −
− − + + − − + +
− + + − − + + −
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +




(b)

Fig. 7. (a) Kls
15×8 large-set Kasami with PTSC = 227040. (b) Optimal Sopt

15×8

designed under Underloaded Case 2a with PTSC = (8)2(15)3 = 216000.
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Sopt
31×42 =




+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + − −
+ − − + + − − − − + − + − + + + + − − + + − − + + − − − − + − + − + + + + − − + + −
+ − + + − − − − + − + − + + + + − − + − + − + + − − − − + − + − + + + + − − + − + −
+ + + − − − − + − + − + + + + − − + − − + + + − − − − + − + − + + + + − − + − − − +
+ + − − − − + − + − + + + + − − + − − + + + − − − − + − + − + + + + − − + − − + + +
+ − − − − + − + − + + + + − − + − − + + + − − − − + − + − + + + + − − + − − + + + −
+ − − − + − + − + + + + − − + − − + + − + − − − + − + − + + + + − − + − − + + − − +
+ − − + − + − + + + + − − + − − + + − − + − − + − + − + + + + − − + − − + + − − + +
+ − + − + − + + + + − − + − − + + − − − + − + − + − + + + + − − + − − + + − − − + −
+ + − + − + + + + − − + − − + + − − − − + + − + − + + + + − − + − − + + − − − − + +
+ − + − + + + + − − + − − + + − − − − + + − + − + + + + − − + − − + + − − − − + + +
+ + − + + + + − − + − − + + − − − − + − + + − + + + + − − + − − + + − − − − + − − +
+ − + + + + − − + − − + + − − − − + − + + − + + + + − − + − − + + − − − − + − + − +
+ + + + + − − + − − + + − − − − + − + − + + + + + − − + − − + + − − − − + − + − − −
+ + + + − − + − − + + − − − − + − + − + + + + + − − + − − + + − − − − + − + − + + −
+ + + − − + − − + + − − − − + − + − + + + + + − − + − − + + − − − − + − + − + + − −
+ + − − + − − + + − − − − + − + − + + + + + − − + − − + + − − − − + − + − + + + + +
+ − − + − − + + − − − − + − + − + + + + + − − + − − + + − − − − + − + − + + + + − −
+ − + − − + + − − − − + − + − + + + + − + − + − − + + − − − − + − + − + + + + − + +
+ + − − + + − − − − + − + − + + + + − − + + − − + + − − − − + − + − + + + + − − + −
+ + + + + + + + + + + + + + + + + + + + − − − − − − − − − − − − − − − − − − − − + +
+ − − + + − − − − + − + − + + + + − − + − + + − − + + + + − + − + − − − − + + − − +
+ − + + − − − − + − + − + + + + − − + − − + − − + + + + − + − + − − − − + + − + − +
+ + + − − − − + − + − + + + + − − + − − − − − + + + + − + − + − − − − + + − + + − −
+ + − − − − + − + − + + + + − − + − − + − − + + + + − + − + − − − − + + − + + − − −
+ − − − − + − + − + + + + − − + − − + + − + + + + − + − + − − − − + + − + + − − + −
+ − − − + − + − + + + + − − + − − + + − − + + + − + − + − − − − + + − + + − − + − −
+ − − + − + − + + + + − − + − − + + − − − + + − + − + − − − − + + − + + − − + + − +
+ − + − + − + + + + − − + − − + + − − − − + − + − + − − − − + + − + + − − + + + + −
+ + − + − + + + + − − + − − + + − − − − − − + − + − − − − + + − + + − − + + + + − −
+ − + − + + + + − − + − − + + − − − − + − + − + − − − − + + − + + − − + + + + − − +




Fig. 8. Optimal signature set Sopt
31×42 designed under Overloaded Case 2 with

minimum PTSC = (42)2(31)3 + 4(31)(30) = 52555044.
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IV. Rank-2-optimal Adaptive Design of Binary

Spreading Codes

This work has been published in the IEEE Transactions on Information Theory,
Sept. 2007.

The performance of direct-sequence code-division-multiple-access (DS-CDMA)
systems is determined by the set of user spreading codes in conjunction with
channel and receiver design specifics. In recent literature, several methods have
been presented for the design of real/complex-valued [1]-[14] or binary [8], [15]-
[24] sets of DS-CDMA spreading codes under various optimization criteria.
Among them, in [1]-[6], [14]-[22] the spreading code set is treated as a sin-
gle matrix parameter to be optimized while the works in [7]-[12], [23], [24]
present iterative algorithms that update the codes of the set individually in a
round-robin fashion.

In particular, sets of spreading codes that minimize the total squared cor-
relation (TSC) were designed in [1], [2], while distributed algorithms that it-
eratively decrease TSC by updating one-by-one the individual codes of the set
were developed in [7]-[10]. Band-limited sets that maximize the user capacity
of synchronous DS-CDMA systems were constructed in [3]. Optimal sets for
asynchronous DS-CDMA systems were designed in [4]-[6], while the iterative
method of [9], [10] was modified to suit asynchronous systems in [11] and multi-
path channels in [12]. Collaborative multibase designs were studied in [13]. In
all the above developments, each user spreading code was allowed to take any
value in the real vector space subject to a (unit-)norm constraint.

In [17], we concentrated on binary sets of spreading codes and derived new
lower bounds on the TSC. Optimal binary sets that meet the TSC bound with
equality were also designed in [17], as well as in [18],[19], while their sum
capacity, total asymptotic efficiency, and maximum squared correlation were
evaluated in [20]. In addition, a searching algorithm for minimum-TSC spread-
ing code sets with low cross-correlation spectrum was presented in [21]. Inter-
estingly, if we consider binary sets of spreading codes for transmission over a
synchronous DS-CDMA channel with unequal channel gains for different users,
then the minimum-TSC sets of [17]-[19] also minimize the corresponding total
weighted squared correlation (TWSC) [14] as long as the system is underloaded
and the spreading code length (processing gain) is odd or a multiple of four.

For overloaded systems, however, with unequal user gains, the minimum-
TWSC optimality of minimum-TSC binary sets is lost; the design of optimal
binary sets for such systems is still an open problem. In an attempt to design
appropriate binary spreading codes for overloaded synchronous transmissions
with unequal received power values as well as asynchronous transmissions over
-potentially- multipath channels, suboptimal distributed algorithms were pre-
sented in [8], [23], [24]. In these works, the user codes are updated one-by-one,
similar to the approach followed in [7]-[12] for real-valued spreading codes, sim-
plifying the set design problem to the adaptive design of one spreading code in
the presence of colored interference.
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In this report, we revisit the work of [8], [23], [24] and consider again the
adaptive design of binary spreading codes that -in the presence of colored
interference- maximize the signal-to-interference-plus-noise ratio (SINR) at the
output of the maximum-SINR (MSINR) filter. The optimal code is a function
of the disturbance (interference plus noise) autocovariance matrix and its eval-
uation over the binary field is NP-hard [24]. Instead, in this present work we
propose to eigendecompose and approximate the inverse disturbance autoco-
variance matrix by its two maximum-energy components alone. Then, we show
how to optimize the binary spreading code under the rank-2 approximation of
the inverse disturbance autocovariance matrix with lower than quadratic com-
plexity. We demonstrate the significant SINR performance superiority of the
proposed rank-2-optimal adaptive design in comparison to direct hard-limiting
of the maximum eigenvector of the inverse disturbance autocovariance matrix
(or the minimum eigenvector of the interference autocovariance matrix) [8], [24],
which we see to be equivalent to rank-1-optimal adaptive binary spreading code
design. Moreover, simulation studies indicate that the proposed rank-2-optimal
spreading code can be the exact full-rank-optimal solution with significantly
higher probability than the rank-1-optimal code (for example, when the re-
turned rank-1-optimal code is globally optimal with probability 0.4, the rank-
2-optimal code is globally optimal with probability 0.85). In fact, simple it-
erative Hamming-distance-1 steepest descent search [22], [24] initialized at the
proposed rank-2-optimal spreading code raises the probability of convergence
to the full-rank-optimal solution to as high as 0.95. Certainly, the proposed
adaptive binary code design can serve as an appropriate initialization point for
other, potentially more sophisticated, iterative binary search procedures.

A. Signal Model and Problem Statement

Consider the vector signal model

r = b
√
P s + y (71)

where b ∈ {±1} is a uniformly distributed bit random variable, s ∈ RL a deter-
ministic vector waveform (spreading code) with ‖s‖ = 1 such that all collected
energy is absorbed/represented by the scalar P > 0, and y ∈ RL is a zero-
mean random disturbance vector with positive definite autocovariance matrix
R = E

{
yyT

}
(E {·} denotes statistical expectation and T is the transpose

operator).
The general signal model of (71) covers, for example, synchronous DS-

CDMA transmissions where a user of interest with spreading code s transmits
over an additive noise channel in the presence of K interfering users. In that
case, the overall additive disturbance term takes the form y =

∑K
k=1 bk

√
Pksk +

n where bk ∈ {±1} , Pk > 0, and sk ∈ RL are the uniformly distributed user
bit, received energy per bit, and normalized deterministic spreading code of the
kth interferer, k = 1, 2, . . . ,K, and n represents additive zero-mean channel
noise. Similarly, (71) can model asynchronous DS-CDMA transmissions when
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the receiver is synchronized with the signal of interest or can be extended to
cover multipath transmissions if s is replaced by the effective (channel processed)
user signature.

For an arbitrary spreading code s, the linear filter/receiver w that exhibits
maximum SINR at its output has the form

w (s) = cR−1s, c > 0, (72)

and the (maximum) output SINR value is

SINR (s) =

E

{(
wT (s) b

√
P s
)2
}

E
{
(wT (s) z)

2
} = P sT R−1s. (73)

We recall that, if the additive disturbance vector y is Gaussian, then sgn
[
wT (s) r

]

is the minimum bit-error-rate (BER) detector with error probability given by

BER(s) = Q
(√

P sT R−1s
)

where Q (a) =
∫∞

a
1√
2π
e−

t2

2 dt.

Our objective is to design the spreading code s so that the corresponding
SINR (s) value is maximized (and BER(s) is minimized under the Gaussian
additive disturbance assumption). Since the disturbance autocovariance matrix
R is positive definite,

R =

L∑

i=1

λiqiq
T
i , λ1 ≥ λ2 ≥ . . . ≥ λL > 0, ‖qi‖ = 1, i = 1, 2, . . . , L, (74)

represents its eigendecomposition where λi and qi are the ith eigenvalue and
normalized eigenvector, respectively, of R. Then, the real-valued spreading code
s that maximizes SINR (s) is given by [10]-[12], [24]

sR−OPT
4
= arg max

s∈RL,‖s‖=1

{
P sTR−1s

}
= qL. (75)

Therefore, the optimal real-valued code sR−OPT can be obtained with complex-
ity that is dominated by the complexity of the eigendecomposition of the L×L
matrix R.

In this present work, we are interested in maximizing SINR (s) subject to
the constraint that s is binary. The problem of obtaining the optimal binary
spreading code,

sOPT
4
= arg max

s∈
{
± 1√

L

}L

{
P sTR−1s

}
, (76)

is NP-hard [23], [24] and can be solved through exhaustive search over all possi-
ble L-bit combinations. In the next section, we seek a computationally efficient

alternative for the design of a spreading code s ∈
{
± 1√

L

}L

.
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B. Rank-2-optimal Design of Binary Spreading Codes

Given the eigendecomposition of R in (74),

R−1 =

L∑

i=1

1

λi
qiq

T
i ,

1

λL
≥ 1

λL−1
≥ . . . ≥ 1

λ1
> 0, ‖qi‖ = 1, i = 1, 2, . . . , L,

(77)
and the binary spreading code optimization problem in (76) can be rewritten as

sOPT = arg max
s∈
{
± 1√

L

}L

{
L∑

i=1

1

λi

(
sT qi

)2
}

(78)

where 0 ≤
(
sT qi

)2 ≤ 1, i = 1, 2, . . . , L. Therefore, the optimal binary vector
sOPT maximizes the sum of its weighted projections on the eigenvectors qi with
weights 1/λi, i = 1, . . . , L.

If we simplify the optimization problem by keeping only the strongest term
1

λL

(
sT qL

)2
in (78) (which is equivalent to using the approximation R−1 '

1
λL

qLqT
L in (76)), we obtain the rank-1-optimal spreading code

s1
4
= arg max

s∈
{
± 1√

L

}L

{(
sT qL

)2}
= ±sgn (qL) (79)

where sgn (·) denotes the sign operator. Hence, we showed that the rank-1-
optimal binary code is simply the minimum-eigenvalue eigenvector of R passed
through a sign hard-limiter. From another point of view, if we follow the com-
mon approach of: (i) first relaxing the binary constraint by allowing s ∈ RL,
‖s‖ = 1, (ii) then solving the relaxed problem to obtain sR−OPT = qL, and
finally mapping sR−OPT = qL to the binary field by taking the sign of its
components, then we again obtain the rank-1-optimal binary spreading code
sgn (sR−OPT) = sgn (qL) = s1. Therefore, the relaxation approach in [8], [24]
is equivalent to rank-1 approximation of R−1.

To obtain a binary spreading code with higher SINR than SINR (s1) , in

this present work we propose to keep the two strongest terms 1
λL

(
sT qL

)2
+

1
λL−1

(
sT qL−1

)2
in (78) or -equivalently- use rank-2 approximation of R−1 '

1
λL

qLqT
L + 1

λL−1
qL−1q

T
L−1. Then, our optimization problem becomes

s2 = arg max
s∈
{
± 1√

L

}L

{
1

λL

(
sT qL

)2
+

1

λL−1

(
sT qL−1

)2
}
. (80)

Below, we show that the rank-2-optimal binary vector s2 in (80) can always be
obtained with less than quadratic complexity (less than the complexity required
for the eigendecomposition of R).

We begin by defining the complex vector

z
4
=

1√
λL

qL + j
1√
λL−1

qL−1. (81)
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Then, the problem in (80) is converted to

s2 = arg max
s∈
{
± 1√

L

}L

{∣∣sT z
∣∣2
}

= arg max
s∈
{
± 1√

L

}L

{∣∣sT z
∣∣} . (82)

In an effort to solve (82) in less than quadratic complexity, we consider the
auxiliary-variable techniq ue that has been used in a communications theory
context before in [25] and then again in [26]. Let s = [s1 s2 . . . sL]

T
and

z = [z1 z2 . . . zL]T where

zi = |zi| ejφi , −π
2
≤ φi <

3π

2
, i = 1, 2, . . . , L. (83)

We introduce an auxiliary variable φ ∈ [−π, π) and rewrite the quantity to be
maximized as

∣∣sT z
∣∣ = max

φ∈[−π,π)

{
Re
{
sT ze−jφ

}}
= max

φ∈[−π,π)

{
L∑

i=1

si |zi| cos (φ− φi)

}
(84)

where Re {·} extracts the real part of a complex number. Then,

max
s∈
{
± 1√

L

}L

{∣∣sT z
∣∣} = max

s∈
{
± 1√

L

}L
max

φ∈[−π,π)

{
L∑

i=1

si |zi| cos (φ− φi)

}

= max
φ∈[−π,π)






L∑

i=1

|zi| max
si∈

{
± 1√

L

} {si cos (φ− φi)}




 (85)

= max
φ∈[−π,π)

{
L∑

i=1

|zi|
1√
L
|cos (φ− φi)|

}
, (86)

since for any φ ∈ [−π, π) the optimal si value in (85) is si (φ) = 1√
L

sgn (cos (φ− φi)) ,

i = 1, 2, . . . , L. The final quantity
∑L

i=1 |zi| 1√
L
|cos (φ− φi)| in (86) is maxi-

mized for a particular value φOPT ∈ [−π, π) and s (φOPT) = [s1 (φOPT) s2 (φOPT)

. . . sL (φOPT)]
T

is the rank-2-optimal binary vector we are searching for in (12),
i.e. s2 = s (φOPT) . We will now show that we can always construct a set of L

spreading codes U = {u1,u2, . . . ,uL} , ui ∈
{
± 1√

L

}L

, and guarantee that

s (φOPT) ∈ U . Therefore, the maximization in (12) can be carried out over a
set of L candidates only without loss of optimality.

Partition ZL = {1, 2, . . . , L} into

I1 =
{
i : φi ∈

[
−π

2
,
π

2

)}
and I=

{
i : φi ∈

[
π

2
,
3π

2

)}
= ZL − I1 (87)

and define the set of angles

φ̂i
4
=

{
φi, i ∈ I1

φi − π, i ∈ I2
, i = 1, 2, . . . , L, (88)
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such that −π
2 ≤ φ̂i <

π
2 , i = 1, 2, . . . , L. Define, for notational simplicity, the vec-

tor operation ŝ (φ)
4
= [ŝ1 (φ) ŝ2 (φ) . . . ŝL (φ)]

T
with ŝi (φ)

4
= sgn

(
cos
(
φ− φ̂i

))
,

i = 1, 2, . . . , L, φ ∈ [−π, π) . Then,

si (φ) =

{
ŝi(φ)√

L
, i ∈ I1

− ŝi(φ)√
L
, i ∈ I2

, i = 1, 2, . . . , L. (89)

Consider a mapping e from ZL to ZL that sorts φ̂1, φ̂2, . . . , φ̂L: −π
2 ≤ φ̂e(1) ≤

φ̂e(2) ≤ . . . ≤ φ̂e(L) <
π
2 . In (85), (86), maximization with respect to φ can be

carried out over any subinterval of length π. We choose φ̂e(1) − π
2 and φ̂e(1) + π

2
as the limits of such a subinterval and rewrite the original optimization problem
of (85) as

max
s∈
{
± 1√

L

}L

{∣∣sT z
∣∣} = max

φ∈[φ̂e(1)−π
2 ,φ̂e(1)+

π
2 )






L∑

i=1

|zi| max
si∈

{
± 1√

L

} {si cos (φ− φi)}




 .

(90)

By examining the subintervals
[
φ̂e(1) − π

2 , φ̂e(2) − π
2

)
,
[
φ̂e(2) − π

2 , φ̂e(3) − π
2

)
,

. . . ,
[
φ̂e(L−1) − π

2 , φ̂e(L) − π
2

)
,
[
φ̂e(L) − π

2 , φ̂e(1) + π
2

)
, we conclude that

[
ŝe(1) (φ) ŝe(2) (φ) . . . ŝe(L) (φ)

]
=





[+1 − 1 − 1 . . .− 1 − 1] , φ̂e(1) − π
2 ≤ φ < φ̂e(2) − π

2

[+1 + 1 − 1 . . .− 1 − 1] , φ̂e(2) − π
2 ≤ φ < φ̂e(3) − π

2
...

[+1 + 1 + 1 . . .+ 1 − 1] , φ̂e(L−1) − π
2 ≤ φ < φ̂e(L) − π

2

[+1 + 1 + 1 . . .+ 1 + 1] , φ̂e(L) − π
2 ≤ φ < φ̂e(1) + π

2 .

(91)

We collect the L binary vectors that appear in the L cases above,

ũi
4
= [+1 . . . + 1︸ ︷︷ ︸

i

−1 . . . − 1︸ ︷︷ ︸
L−i

]T , i = 1, 2, . . . , L, and create the matrix

Ũ
4
= [ũ1 ũ2 . . . ũL] (92)

whose ith row we denote by d̃T
i , i = 1, 2, . . . , L. Then, we reorganize Ũ to

Û = [û1 û2 . . . ûL]
4
=
[
d̂1 d̂2 . . . d̂L

]T
by defining the binary vectors

d̂i
4
= d̃e−1(i), i = 1, 2, . . . , L, (93)

where e−1 : ZL → ZL is the inverse sorting mapping (note that ŝ (φ) ∈
{û1, û2, . . . , ûL} for any φ ∈

[
φ̂e(1) − π

2 , φ̂e(1) + π
2

)
). Finally, we define

di
4
=

{
1√
L
d̂i, i ∈ I1

− 1√
L
d̂i, i ∈ I2

, i = 1, 2, . . . , L, (94)
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and construct

U = [u1 u2 . . . uL]
4
= [d1 d2 . . . dL]

T
. (95)

The set U 4
= {u1,u2, . . . ,uL} contains s for any φ ∈

[
φ̂e(1) − π

2 , φ̂e(1) + π
2

)
. But

φOPT ∈
[
φ̂e(1) − π

2 , φ̂e(1) + π
2

)
, which implies s (φOPT) = s2 ∈ U . Hence, (82)

becomes
s2 = argmax

s∈U

{∣∣sT z
∣∣} . (96)

We conclude that the maximization task in (82) has been converted to an
equivalent linear-complexity maximization problem in (96). The complexity of
the construction of U is dominated by the complexity of the sorting function e
which is of order O (L log2 L) . Therefore, we have described a method to obtain
the rank-2-optimal binary vector s2 in (80) with complexity that is dominated
by the complexity of the eigendecomposition of the L× L matrix R alone.

As a brief summary, the sequence of the proposed calculations is as follows.
The autocovariance matrix R is eigendecomposed as in (74) followed by the
computation of the z vector by Eq. (81). The sets I1 and I2 are constructed

through (87); the angles φ̂1, φ̂2, . . . , φ̂L are calculated by (88) and sorted to

φ̂e(1) ≤ φ̂e(2) ≤ . . . ≤ φ̂e(L). Next, Ũ is constructed as in (92) and reorganized

to Û via (93); then, U is found by (95). The columns of U, u1,u2, . . . ,uL,
are used to calculate the quantities

∣∣uT
1 z
∣∣ ,
∣∣uT

2 z
∣∣ , . . . ,

∣∣uT
Lz
∣∣ that are compared

to each other to identify the maximum value among them, say
∣∣uT

j z
∣∣ for some

j ∈ {1, 2, . . . , L}. The latter determines the rank-2-optimal binary spreading
code s2 = uj .

C. Simulation Studies

We consider a DS-CDMA system where the user of interest transmits over an
additive zero-mean white Gaussian noise channel with variance σ2 in the pres-
ence of K synchronous interferers. The system processing gain (spreading code
length) is L = 16. The received signal-to-noise ratio (SNR) of the user of inter-

est, SNR
4
= P

σ2 , is set to 10dB, while the received SNRs of the K interferers,

SNRk
4
= Pk

σ2 , k = 1, 2, . . . ,K, are uniformly spaced between 8dB and 11dB. The
interfering spreading codes are randomly generated.

In our studies, we compare the SINR performance of: (i) the optimal bi-
nary spreading code sOPT of (76) obtained through exhaustive search over all
possible L-bit combinations; (ii) the rank-1-optimal binary spreading code s1 of
(79) obtained by applying the sign operator on the minimum-eigenvalue eigen-
vector of the interference-plus-noise autocovariance matrix [8], [24]; and (iii)
the proposed rank-2-optimal binary spreading code s2 of (80) obtained by the
procedure developed in Section III. For comparison purposes, we evaluate the
SINR loss, SINR (sOPT) − SINR (s), of s = s1 or s2 with respect to the SINR
of the optimal binary spreading code sOPT. The results that we present are
averages over 1, 000 randomly generated interference signature-set realizations.
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In Fig. 9, we plot the SINR loss of the rank-1-optimal and rank-2-optimal
binary spreading codes as a function of the number of interferersK. Since we are
particularly interested in overloaded systems, we vary K from 16 to 40 interfer-
ers. We observe that the proposed rank-2-optimal spreading code exhibits less
than 0.04dB performance loss which is significantly lower than the performance
loss of the rank-1-optimal code (interestingly, both loss values decrease as K
increases).

In Fig. 10, we plot the probability of global, full-rank, optimality
Pr {s = sOPT} for the rank-1-optimal and rank-2-optimal binary spreading codes
as a function of the number of interferers K. We observe that
.23 ≤ Pr {s1 = sOPT} ≤ .43, while .75 ≤ Pr {s2 = sOPT} ≤ .86 as K is varied
from 16 to 40 interferers. Therefore, with the proposed optimization of the bi-
nary spreading code under the rank-2 approximation of the inverse disturbance
autocovariance matrix, we have practically doubled the probability that the
designed spreading code is full-rank optimal with only O (L log2 L) additional
computational cost.

To the extend that neither the rank-1-optimal nor the rank-2-optimal binary
spreading code design is globally optimal with probability one, the returned
codes can potentially be used as the initialization point of an iterative steepest
descent search [22], [24] that may converge to a (suboptimal in general) spread-
ing code with higher SINR. In this spirit, we repeated the studies of Figs. 9
and 10 and fed the returned codes s1 and s2 to a Hamming-distance-1 steepest
descent search to produce the improved spreading codes s1,SD and s2,SD, cor-
respondingly. In Fig. 11 we plot the SINR loss of s1,SD and s2,SD; in Fig. 12
we plot the corresponding probabilities of full-rank optimality. The SINR su-
periority of the rank-2 approach is maintained. Interestingly, we observe that
Pr {s2,SD = sOPT} ≥ .9 for any interference load. For example, when K = 20
the probability of global optimality is .95 for s2,SD (and .79 for s1,SD). To ex-
amine the speed of convergence of the steepest descent search, in Fig. 13 we
plot the evolution of the SINR value as a function of the number of iterations.
The SINR of the globally optimal code sOPT is included as reference. We ob-
serve that when the search is initialized at the proposed rank-2-optimal code,
convergence is achieved within three iterations only.

D. Conclusions

In the broad context of spread-spectrum communications (for example CDMA
systems) or chip-based signal waveform design, we considered the problem of
adaptively identifying the binary code that maximizes the signal-to-interference-
plus-noise ratio (SINR) at the output of the maximum-SINR filter. The optimal
code is a function of the disturbance autocovariance matrix and the optimiza-
tion problem is NP-hard. Instead, we developed a new algorithm of less than
quadratic complexity for the computation of the optimal code under rank-2
approximation of the inverse disturbance autocovariance matrix.

As an illustration of practical significance, we demonstrated the great SINR
performance improvement of the proposed rank-2-optimal adaptive design for
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overloaded CDMA systems with unequal user power over the rank-1-optimal
adaptive design which -as we showed- is equivalent to direct hard-limiting of
the minimum-eigenvalue eigenvector of the disturbance autocovariance matrix.
In fact, the proposed rank-2-optimal design practically doubles the probability
that the returned code is full-rank-optimal and when the rank-2-optimal design
is used to initialize trivial Hamming-distance-1 steepest descent, the full-rank
optimal code is reached with probability greater than 0.9 (within three itera-
tions). Certainly, the proposed adaptive binary code design may serve well as
the initialization point for other, potentially more sophisticated, iterative binary
search procedures.
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Fig. 9: SINR loss of rank-1-optimal and rank-2-optimal binary spreading code
designs versus number of interferers (signature length L = 16).
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Fig. 10: Probability of full-rank optimality of rank-1-optimal and rank-2-optimal
binary spreading code designs versus number of interferers.
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Fig. 11: SINR loss of steepest descent upon convergence with rank-1-optimal
and rank-2-optimal initialization.
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Fig. 12: Probability of full-rank optimality of steepest descent search upon
convergence with rank-1-optimal and rank-2-optimal initialization.
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V. Scalable TSC-optimal Overloading of Binary

Signature Sets

The work has been presented at IEEE GLOBECOM 2006.
In code-division multiplexing applications, for example direct-sequence code-

division multiple-access (DS-CDMA) cellular communications systems, each of
the K participating signals/users is equipped with a unique identifying signature
vector sk ∈ CL, ||sk|| = 1, k = 1, 2, . . . ,K. All signatures put together in the
form of a matrix define what we call the signature set

S 4
= [s1 s2 . . . sK ] ∈ C

L×K . (97)

In synchronous code-division multiplexing transmissions over well behaved
Nyquist channels, we are interested in using a signature set with the smallest
possible total squared correlation (TSC) value [1]-[6]

TSC(S)
4
=

K∑

i=1

K∑

j=1

∣∣sH
i sj

∣∣2 (98)

where H denotes the Hermitian operator. For complex/real-valued signature

sets S ∈ CL×K or RL×K , if K ≥ L, TSC(S) ≥ K2

L [1] (of course, TSC(S) ≥ K

if K < L). Overloaded (K ≥ L) sets with TSC equal to K2

L have been known
as Welch-bound-equality (WBE) sets. Algorithms and studies for the design
of complex or real WBE signature sets can be found in [3]-[10]. While not an
issue for underloaded systems, it is well understood that as new users enter/exit
an overloaded system the existing signature set has to be re-designed or re-cast
to maintain TSC optimality (WBE sets do not stay optimal if signatures are
added/removed). As a solution to the scalability problem in the complex/real
vector domain, two subclasses of WBE sets are proposed in [11] that provide
satisfactory TSC/signal-to-interference-plus-noise ratio (SINR) performance as
the number of users changes dynamically.

In digital transmission systems it is necessary to have finite-alphabet signa-
ture sets. Recently, new bounds were derived on the TSC of binary antipodal
signature sets together with optimal designs for arbitrary signature lengths and
set sizes [2]-[4]. Studying the designs provided therein we observe that, similar
to the complex/real-field case, as long as the system is underloaded users can be
accommodated in and out without having to change the existing signature set
to maintain TSC optimality. In the overloaded regime, when additional users
enter/exit the system the existing signature set has to be re-designed/re-cast. In
this paper, we present a complete solution to the scalability problem for binary
sets with overloading up to 100%.

Consider a (K = L + n,L), n ∈ {−1, 0, 1, 2}, TSC-optimal fixed initial

matrix SI
4
= [s1 s2 . . . sL+n] ,

sk ∈
{
± 1√

L

}L

, k = 1, 2, . . . , L + n, n ∈ {−1, 0, 1, 2}, given by [2]-[4]. To this
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set, we will append N, 1 ≤ N ≤ L + 2, carefully designed unique signatures
{sL+n+k}N

k=1 , n ∈ {−1, 0, 1, 2}, that define the extended signature matrix

SE
4
= [sL+n+1 . . . sL+n+N ] ∈

{
± 1√

L

}L×N

. (99)

The complete (K = L+ n+N,L) signature matrix S can then be expressed as

S 4
= [SI SE ] ∈

{
± 1√

L

}L×(L+n+N)

. (100)

From (98) and (100),

TSC(S) = TSC(SI ) + TSC(SE) + F(SI ,SE) (101)

where F(SI ,SE) is the sum of the absolute squared cross-correlations between
every signature in set SI and every signature in set SE ,

F(SI ,SE) = 2
∑

i ∈ {1,2,...,L+n}
j ∈ {L+n+1,...,L+n+N}

|sT
i sj |2 (102)

(T denotes the transpose operator). To provide scalable signature set designs
and control the TSC value, in this paper we consider the problem of minimizing
the TSC of S = [SI SE ] subject to SI being fixed and TSC-optimal. In past
related literature, SI and SE were designed to be orthogonal binary Hadamard
sets (which requires the signature length L to be a multiple of four) scrambled
independently by complex random PN-sequences [15]. The mutual interference,
quantified as a loss in SINR, between the two sets of signatures was suppressed
through iterative detection. In [11] it was shown that for a fixed and optimal
SI , TSC(S) ≥ L+ 3N for all S ∈ CL×(L+N), 1 ≤ N ≤ L. Here, we derive new
tighter bounds on the conditional TSC of binary sets for all overloaded-by-N
cases where 1 ≤ N ≤ L + 2. The work can be easily extended to cover higher
overloading (from a practical perspective, however, overloading by more than
100% may not be of much interest at present). In addition, we provide optimal
constructions that meet the new conditional TSC bounds with equality (hence,
establish their tightness). Included numerical comparison studies show that the
proposed sets minimally exceed the global TSC bound of [2] and, in fact, in
certain cases meet the bound with equality and become globally TSC optimal.

A. New Bounds on the Conditional TSC of Overloaded
Binary Sets

Our goal is to derive lower bounds on (101) subject to SI being fixed and

optimal over all SE ∈
{{

± 1√
L

}L×N

− SI

}
where 1 ≤ N ≤ L + 2. We derive

the (conditional TSC) bounds on a case-by-case basis.
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Case 1: L ≡ 0 (mod 4), 1 ≤ N ≤ L.
Let SI be an optimal (L,L) initial matrix with TSC(SI ) = L as observed from
Table I4. From [2], the set S ′

= [SI s] is optimal for any s ∈ {± 1√
L
}L and

TSC(S ′
) − TSC(SI) − ‖s‖2 =

(
(L+ 1)

2

L
+
L− 1

L

)
− L− 1 = 2; (103)

hence, for any arbitrary extension matrix SE ∈
{
± 1√

L

}L×N

, F(SI ,SE) = 2N .

From Table I, TSC(SE) ≥ N and we calculate

TSC(S) ≥ L+ 3N. (104)

Case 2: L ≡ 2 (mod 4), 1 ≤ N ≤ L+ 2.

Let SI be an optimal (L+ 2, L) initial matrix with TSC(SI) = (L+2)2

L as calcu-

lated from Table I. From [2], the set S ′
= [SI s] is optimal for any s ∈ {± 1√

L
}L

and

TSC(S ′
) − TSC(SI) − ‖s‖2 =

(
(L+ 3)

2

L
+
L− 1

L

)
− (L+ 2)

2

L
− 1 = 2 +

4

L
;

(105)

hence, for any arbitrary extension matrix SE ∈
{
± 1√

L

}L×N

, F(SI ,SE) =

2N
(

L+2
L

)
. From Table I,

TSC(SE) ≥
{

N + 2(N−1)2

L2 , N ≡ 1 (mod 2)

N + 2N(N−1)
L2 , N ≡ 0 (mod 2)

(106)

and we calculate

TSC(S) ≥
{

(L+2)2

L +N + 2(N−1)2

L2 + 2N(L+2)
L , N ≡ 1 (mod 2)

(L+2)2

L +N + 2N(N−1)
L2 + 2N(L+2)

L , N ≡ 0 (mod 2).
(107)

Case 3: L ≡ 3 (mod 4), 1 ≤ N ≤ L+ 1.

Let SI be an optimal (L+ 1, L) initial matrix. By Table I, TSC(SI ) = (L+1)2

L .

By [2], S ′
= [SI s] is optimal for any s ∈ {± 1√

L
}L and

TSC(S ′
) − TSC(SI) − ‖s‖2 =

(
(L+ 2)

2

L
+
L− 1

L

)
− (L+ 1)

2

L
− 1 = 2 +

2

L
;

(108)

4Table I of [2] is reproduced for convenience in Table I herein.
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hence, for any arbitrary extension matrix SE ∈
{
± 1√

L

}L×N

, F(SI ,SE) =

2N
(

L+1
L

)
. From Table I,

TSC(SE) ≥ N +
N(N − 1)

L2
(109)

and we calculate

TSC(S) ≥ (L+ 1)2

L
+N +

N(N − 1)

L2
+

2N(L+ 1)

L
. (110)

Case 4: L ≡ 1 (mod 4), 1 ≤ N ≤ L− 2.
Let SI be an optimal (L − 1, L) initial matrix5. By Table I, TSC(SI) =

L − 1 + (L−1)(L−2)
L2 . SI can be obtained6 from an optimal (L − 1, L − 1) set

S ′′
, i.e. SI contains an optimal (hence, orthogonal [2]) submatrix S ′′

of size
(L− 1, L− 1). This property is utilized in the following Lemma and Theorem,
which, in turn, are used to derive the bound.

Lemma 1: Let S ′′
=
[
s
′′
1 s

′′
2 . . . s

′′

L−1

]
∈
{
± 1√

L

}(L−1)×(L−1)

, L ≡ 1 (mod 4),

be the optimal (orthogonal) submatrix of SI . Then, for any x ∈
{
± 1√

L

}L−1

,
∑L−1

i=1 xT s
′′
i ∈ (L−1

L ,−L−1
L ).

Proof : The vectors s
′′
1 , . . . , s

′′

L−1 form an orthogonal basis for RL−1. Then, for

any x ∈
{
± 1√

L

}L−1

,

x = a1s
′′

1 + a2s
′′

2 + . . .+ aL−1s
′′

L−1 (111)

where ai ∈ R and at least one ai 6= 0, i = 1, 2, . . . , L− 1. Using (111),

L−1∑

i=1

xT s
′′

i =
L− 1

L
(a1 + a2 + . . .+ aL−1) . (112)

Let s
′′
i (1), i = 1, . . . , L − 1 denote the first element of s

′′
i and x(1) the first

element of x. Without loss of generality, over the binary antipodal signature
field s

′′
i (1) = 1√

L
, i = 1, 2, . . . , L− 1. Since, x(1) ∈ {± 1√

L
}, ∑L−1

i=1 ai = ±1 and

the result follows.

Theorem 1: Let SI be an optimal (L − 1, L), L ≡ 1 (mod 4), initial matrix.

Create the (L,L) set S ′
=
[
SI [± 1√

L
xT ]T

]
for an arbitrary x ∈ {± 1√

L
}L−1.

Then,

argmin
x∈{± 1√

L
}L−1

[
TSC(S

′
) − TSC(SI)

]
= 1 + 2

(L− 2)(L− 1)

L2
.

5No systematic construction of (L, L), L ≡ 1 (mod 4), TSC-optimal sets is known [2]-[4].
6To the best of the authors’ knowledge, no other method is known to systematically obtain

an (L − 1, L) TSC-optimal set.
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Proof : Design an (L,L−1) optimal set S ′′′
=
[
S ′′

x
]

where x ∈ {± 1√
L
}L−1 and

S ′′
=
[
s
′′
1 s

′′
2 . . . s

′′

L−1

]
, s

′′
i ∈ { 1√

L
}L−1, is an optimal (orthogonal) (L−1, L−1)

set. From [2],

TSC(S ′′′
) − TSC(S ′′

) =
(L− 1)2

L2
+ 2

L−1∑

i=1

(
xT s

′′

i

)2

= 3
(L− 1)2

L2
. (113)

Hence,
L−1∑

i=1

(
xT s

′′

i

)2

=
(L− 1)2

L2
. (114)

Now append any row vector
{
± 1√

L

}1×L

to the top of S ′′′
to form S ′

. Then,

using (114),

TSC(S ′
) − TSC(SI ) = 1 + 2

∑L−1
i=1

(
xT s

′′
i ± 1

L

)2

= 1 + 2
[

(L−1)2

L2 + L−1
L2 ± 2

L

∑L−1
i=1 xT s

′′
i

]
.

(115)

From Lemma 1,
∑L−1

i=1 xT s
′′
i = ±L−1

L . Therefore,

argmin
x∈{± 1√

L
}L−1

[
TSC(S

′
) − TSC(SI)

]
= 1 + 2

[
(L− 1)2

L2
− (L− 1)

L2

]
.(116)

From Theorem 1, for any arbitrary extension matrix SE ∈
{
± 1√

L

}L×N

, F(SI ,SE) ≥
2N
L2 (L− 2)(L− 1). From Table I,

TSC(SE) ≥ N +
N(N − 1)

L2
(117)

and we calculate

TSC(S) ≥ L−1+
(L− 1)(L− 2)

L2
+N+

N(N − 1)

L2
+

2N

L2
(L− 2)(L− 1) . (118)

Table II summarizes our findings in (104), (107), (110), and (118).

B. Scalable Conditionally TSC-optimal Binary Sets

Following our formulation and notation in (100), (101), conditionally TSC-
optimal design of an overloaded signature set S is equivalent to designing an
extension matrix SE such that TSC(SE) and F(SI ,SE) are jointly minimized.
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In the following, HP with columns hi, i = 1, . . . , P, represents a Hadamard ma-
trix7 of size P . Below, we provide scalable conditionally TSC-optimal signature
set designs for all lengths L and overloading of (about) 100%.

Case 1: L ≡ 0 (mod 4), 1 ≤ N ≤ L.
Let SI = 1√

L
HL be the (L,L) optimal [2] initial matrix. Obtain (an equivalent

Hadamard matrix) ML by multiplying any row of 1√
L
HL by −1 and select any

N columns from ML to form the extension matrix SE = [m1 m2 . . .mN ]. It
can be shown that

TSC(S) = L+ 3N (119)

which is equal to the bound in (104). Hence, S is conditionally optimal.
It is interesting to note that the designs of Vanhaverbeke, Moeneclaey, and

Sari in [15] fall under this case, meet the bound, and are conditionally optimal.

Case 2: L ≡ 2 (mod 4), 1 ≤ N ≤ L+ 2.
Obtain HL+2 and omit the first two rows to create the (L + 2, L) optimal [3]
initial matrix SI = 1√

L
H

′

L+2. Obtain ML+2 by multiplying any of the last

L − 2 rows of 1√
L
HL+2 by −1. Omit the first two rows of ML+2, select any

bN
2 c columns that begin with [ 1√

L
1√
L
]T and any dN

2 e columns that begin with

[ 1√
L

−1√
L
]T to create the extension set SE = M

′

L+2. It can be shown that

TSC(S) =






(L+2)2

L +N + 2(N−1)2

L2 + 2N(L+2)
L , N ≡ 1 (mod 2)

(L+2)2

L +N + 2N(N−2)
L2 + 2N(L+2)

L , N ≡ 0 (mod 2)
(120)

which is equal to our bounds in (107). Hence, S is conditionally optimal.
Case 3: L ≡ 3 (mod 4), 1 ≤ N ≤ L+ 1.
Obtain HL+1 and omit the first row to create the (L+ 1, L) optimal [2] initial
matrix SI = 1√

L
H

′

L+1. Obtain ML+1 by multiplying any of the last L− 1 rows

of 1√
L
HL+1 by −1. Omit the first row of ML+1 and select any N columns to

create the extension matrix SE = M
′

L+1. It can be shown that

TSC(S) =
(L+ 1)2

L
+N +

N(N − 1)

L2
+

2N(L+ 1)

L
(121)

which is equal to our bound in (110). Hence, S is conditionally optimal.
Case 4: L ≡ 1 (mod 4), 1 ≤ N ≤ L− 2.
Obtain 1√

L
HL−1 and multiply the kth column, k ∈ {1, 2, . . . , L − 1}, by −1

7We recall that a Hadamard matrix HN is an N × N matrix with elements +1 or −1 and
orthogonal columns, HT

NHN = NIN where IN is the size-N identity matrix. A necessary
condition for a Hadamard matrix to exist is that its size is a multiple of four, except for the
trivial cases of size one or two. Without loss of generality, the first row and the first column
of HN contain only +1.
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to create H
′

L−1 =
[
h

′
1 h

′
2 . . . h

′

L−1

]
. Append the row vector [

1√
L

1√
L
. . .

1√
L︸ ︷︷ ︸

L−1

]

as the first row to H
′

L−1 to create the initial matrix SI = H
′′

L−1, which is an

(L − 1, L) optimal set [2]. Multiply the first row of H
′

L−1 by −1 and exclude

the kth column to create M
′

L−2 =
[
m

′
1 m

′
2 . . . m

′

L−2

]
. Finally, append the row

vector [
−1√
L

−1√
L
. . .

−1√
L︸ ︷︷ ︸

L−2

] as the first row to M
′

L−2 and keep any N columns to

create the extension matrix SE = M
′′

L−2 =
[
m

′′
1 m

′′
2 . . . m

′′

N

]
. We calculate

TSC(S) = L−1+
(L− 1)(L− 2)

L2
+N+

N(N − 1)

L2
+

2N

L2
(L−1)(L−2)

(122)
which is equal to our bound in (118). Hence, S is conditionally optimal. The
derivation of (122) is provided in Appendix A.

To conclude the presentation and establish that all set designs S provided
herein contain unique signatures, we need only to observe that for any matrix

MP = [m1 m2 . . . ,mP ] , mi ∈
{
± 1√

P

}P

, i = 1, . . . , P, obtained by multiply-

ing any row of HP = [h1 h2 . . . ,hP ] , hi ∈
{
± 1√

P

}P

, i = 1, . . . , P, by −1,

if d (hi,mj) denote the Hamming distance between hi,mj , i, j = 1, 2, . . . , P .
Then,

∣∣hT
i mj

∣∣ =
∣∣∣∣1 − 2d (hi,mj)

P

∣∣∣∣ . (123)

By construction of MP , if i = j, d (hi,mj) = 1 and if i 6= j, d (hi,mj) = P
2 ±1.

From (123)
∣∣hT

i mj

∣∣ =
{

1 − 2
P , i = j

2
P , i 6= j

. (124)

Hence, every column of MP is different from every column of HP .
Regarding the scalability characteristics of the presented designs for medium-

access-control (MAC), as users enter the system we may assign signatures at will
first from SI and then from SE without having to change the existing/deployed
signature set. In the event of a user leaving the system from the extended
set SE no action is needed to maintain conditional TSC optimality. If a user
leaves from the initial set SI and SE is non-empty then its signature should
be reassigned to an SE user (or simply to the next incoming user) to regain
conditional optimality.

C. Numerical Evaluation and Comparisons

In this section we evaluate numerically the TSC quality of the proposed over-
loaded signature sets. Fig. 14 shows as an example a [19, 16] conditionally
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TSC-optimal set (obtained under Case 1). The natural benchmark is the un-
conditionally minimum attainable TSC value in [2]. Fig. 15 plots the TSC value
of our Case 1, L = 16 design against the bound for all 1 ≤ N ≤ 16. Figs. 16, 17,
and 18 carry out similar comparative studies for L = 14 (Case 2), L = 15 (Case
3), and L = 17 (Case 4) designs, respectively.

A broader comment on the TSC quality of the proposed conditionally opti-
mal sets for varying lengths L is offered by the following proposition.
Proposition 1: The TSC of the designs described in Section III is always
within L

4 + 1
2 from the bounds in [2].

Proof : Let S be a Section III design and let minTSC denote the corresponding
TSC lower bound in [2]. We can show that (see Appendix B)

TSC(S) − minTSC ≤





L
4 , L ≡ 0(mod 4),

with equality at N = L
2

L
4 − 1

L − 2
L2 + 1

2 , L ≡ 2(mod 4),
with equality at N = L+2

2
L
4 − 1

4L − 1
4L2 + 1

4 , L ≡ 3(mod 4),
with equality at N = L+1

2
L
4 − 1

4L − 1
4L2 + 1

4 , L ≡ 1(mod 4).
(125)

Somewhat finer bounds depending on the form of the total number of signatures
K are derived in Appendix B and given in Table III.

D. Conclusions

We first derived lower bounds on the conditional total squared correlation of
overloaded binary signature sets grown on full-load TSC-optimal sets for any
signature length L and set size K = L+N+n, 1 ≤ N ≤ L+2, n ∈ {−1, 0, 1, 2}.
Then, we presented conditionally optimal designs for all such (K,L) set sizes
(which establish the tightness of the corresponding bounds).

We analyzed the TSC performance of the conditionally optimal (L+N,L)
signature sets against the TSC of optimal (L + N,L) sets and found that we
are always within L

4 + 1
2 or better. Direct comparison of the conditionally TSC-

optimal designs with the TSC bounds and optimal sets in [2] shows that: Case
1 when N = {1, 2, L − 2, L − 1, L}, Case 2 when N = {1, 2, L, L + 1, L + 2},
Case 3 when N = {1, 2, L − 1, L, L + 1}, and Case 4 when N = {L − 3, L −
2} are unconditionally TSC-optimal (that is overloads near 0% or 100% are
handled TSC optimally). Numerically, maximum TSC performance degradation
is observed when the sets are about 50% overloaded. The observed degradation
value is, arguably, a reasonable price to pay for the gained scalability.
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E. Appendix A: Derivation of TSC for scalable L ≡ 1 (mod 4)
designs

Consider S ′
=
[
SI m

′′
i

]
, i = 1, 2, . . . , N, where m

′′
i =

[
−1√

L
m

′T
i

]T
. Then,

TSC(S ′
) − TSC(SI ) = 1 + 2

∑L−1
j=1

∣∣∣m
′T

i h
′
j − 1

L

∣∣∣
2

= 1 + 2

[∑L−1
j=1

∣∣∣m′T

i h
′
j

∣∣∣
2

+
∑L−1

j=1
1

L2 − 2
L

∑L−1
i=1 m

′T

i h
′
j

]

= 1 + 2
[

(L−1)2

L2 + L−1
L2 − 2

L

∑L−1
j=1 m

′T

i h
′
j

]

(126)

where the last equality is from (114). From Lemma 1,
∑L−1

j=1 m
′T

i h
′
j = ±L−1

L .

We now show that for our construction
∑L−1

j=1 m
′T

i h
′
j = L−1

L for all i = 1, . . . , N .
Expanding and simplifying,

L−1∑

j=1

m
′T

i h
′

j =
L− 3

L
+

L−1∑

j=1,j 6=i

m
′T

i h
′

j (127)

(m
′T

i h
′
i = L−3

L since d(m
′
i,h

′
i) = 1). Also note that ∀j 6= i m

′T

i h
′
j = ± 2

L

because d(m
′
i,h

′
j) = L−1

2 ± 1. Assume
∑L−1

j=1 m
′T

i h
′
j = −(L−1)

L for which a

necessary and sufficient condition is
∑L−1

j=1,j 6=i m
′T

i h
′
j = −2(L−2)

L or m
′T

i h
′
j =

−2
L ∀j 6= i. By design, since we multiplied the kth column of H

′

L−1 by −1,

when j = k, m
′T

i h
′
j = 2

L ; hence,
∑L−1

j=1,j 6=i m
′T

i h
′
j 6= −2(L−2)

L . Therefore, from

Lemma 1,
∑L−1

j=1 m
′T

i h
′
j = L−1

L . Substituting (127) in (126) we have TSC(S ′
)−

TSC(SI) = 1 + 2 (L−2)(L−1)
L2 for our choice of extension matrix SE which is the

minimum possible by Theorem 1. Then,

F(SI ,SE) =
2N

L2
(L− 2)(L− 1) (128)

and since, from Table I,

TSC(SE) = N +
N(N − 1)

L2
(129)

we obtain (122).

F. Appendix B: Derivation of (125)

Case 1: L ≡ 0 (mod 4), 1 ≤ N ≤ L.
Consider an (L + N,L) conditionally optimal TSC set S. Calculate and de-
fine the following TSC(S) −minTSC difference functions where minTSC is the
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unconditional TSC bound of an (L+N,L) set:

∆1(N)
4
= L+ 3N − (L+N)2

L , N ≡ 0 (mod 4)

∆2(N)
4
= L+ 3N − (L+N)2

L − 2(L−2)
L , N ≡ 2 (mod 4)

∆3(N)
4
= L+ 3N − (L+N)2

L − L−1
L , N ≡ 1 (mod 2).

(130)

To find the integer value of N ∈ {1, 2, ..., L} that maximizes the functions above,
we first extend their domain to all real N ∈ [1, L] and denote the extended
functions by ∆

′
1(N), ∆

′
2(N), and ∆

′
3(N), respectively. Differentiating each of

these functions with respect to N over the continuous field yields maximum at
N = L

2 for all three cases. Since ∆
′
2(

L
2 ) < ∆

′
3(

L
2 ) < ∆

′
1(

L
2 ) = ∆1(

L
2 ), we set

∆1(
L
2 ) = L

4 as the upper bound. This bound is tight only for N ≡ 0 (mod 4).

For N ≡ 2 (mod 4) and N ≡ 1 (mod 2), ∆
′
2(

L
2 ) and ∆

′
3(

L
2 ) form tighter upper

bounds, correspondingly. These bounds are presented in Table III.

Case 2: L ≡ 2 (mod 4), 1 ≤ N ≤ L+ 2.
Consider an (L+N,L) conditionally optimal TSC set S. Calculate and define
the difference functions TSC(S) − minTSC

∆1(N)
4
= frac(L+ 2)2L+N + 2N(N−2)

L2 + 2N(L+2)
L − (L+N+2)2

L ,
N ≡ 0 (mod 4)

∆2(N)
4
= (L+2)2

L +N + 2N(N−2)
L2 + 2N(L+2)

L − (L+N+2)2

L − 2(L−2)
L ,

N ≡ 2 (mod 4)

∆3(N)
4
= (L+2)2

L +N + 2(N−1)2

L2 + 2N(N−2)
L − (L+N+2)2

L − L−1
L ,

N ≡ 1 (mod 2).
(131)

Then, extending the domain of the three functions to real N ∈ [1, L + 2] and
maximizing overN , we find that the maximum of all domain-extended functions
∆

′
i(N), i = 1, 2, 3, is at N = L+2

2 . Since ∆
′
2(

L+2
2 ) < ∆

′
3(

L+2
2 ) < ∆

′
1(

L+2
2 ) =

∆1(
L+2

2 ), we set ∆1(
L+2

2 ) = L
4 − 1

L − 2
L2 + 1

2 as the upper bound. This bound
is tight only for N ≡ 0 (mod 4). For N ≡ 2 (mod 4) and N ≡ 1 (mod 2),
∆

′
2(

L+2
2 ) and ∆

′
3(

L+2
2 ), correspondingly, form tighter upper bounds presented

in Table III.

Case 3: L ≡ 3 (mod 4), 1 ≤ N ≤ L+ 1.
We calculate the differences TSC(S) − minTSC as follows

∆1(N)
4
= (L+1)2

L +N + N(N−1)
L2 + 2N(L+1)

L − (L+N+1)2

L ,
N ≡ 0 (mod 4)

∆2(N)
4
= (L+1)2

L +N + N(N−1)
L2 + 2N(L+1)

L − (L+N+1)2

L − 2(L−1)2

L2 ,
N ≡ 2 (mod 4)

∆3(N)
4
= (L+1)2

L +N + N(N−1)
L2 + 2N(L+1)

L − (L+N+1)2

L − L−1
L ,

N ≡ 1 (mod 2).
(132)
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Then, extending the domain of the three functions toN ∈ [1, L+1] and maximiz-
ing over N , we find that the maximum of all domain-extended functions ∆

′
i(N),

i = 1, 2, 3, is at N = L+1
2 . Since ∆

′
2(

L+1
2 ) < ∆

′
3(

L+1
2 ) < ∆

′
1(

L+1
2 ) = ∆1(

L+1
2 ),

we set ∆1(
L+1

2 ) = L
4 − 1

4L − 1
4L2 + 1

4 as the upper bound. This bound is tight

only for N ≡ 0 (mod 4). For N ≡ 2 (mod 4) and N ≡ 1 (mod 2), ∆
′
2(

L+1
2 ) and

∆
′
3(

L+1
2 ), correspondingly, form tighter upper bounds presented in Table III.

Case 4: L ≡ 1 (mod 4), 1 ≤ N ≤ L− 2.
As in the previous cases, we calculate TSC(S) − minTSC to be

∆1(N)
4
= L− 1 + (L−1)(L−2)

L2 +N + N(N−1)
L2 + 2N(L2−3L+2)

L2 − (L−1+N)2

L ,
N ≡ 0 (mod 4)

∆2(N)
4
= L− 1 + (L−1)(L−2)

L2 +N + N(N−1)
L2 + 2N(L2−3L+2)

L2 − (L−1+N)2

L

− 2(L−1)2

L2 , N ≡ 2 (mod 4)

∆3(N)
4
= L− 1 + (L−1)(L−2)

L2 +N + N(N−1)
L2 + 2N(L2−3L+2)

L2 − (L−1+N)2

L

−L−1
L , N ≡ 1 (mod 2).

(133)
Letting N ∈ [1, L − 2] and differentiating, we find that the maximum of all
domain-extended functions ∆

′
i(N), i = 1, 2, 3, is at N = L−3

2 . Note that

this value of N lies only in the integer domain of ∆3(N). Since ∆
′
2(

L−3
2 ) <

∆
′
3(

L−3
2 ) < ∆

′
1(

L−3
2 ), we set ∆

′
1(

L−3
2 ) = L

4 − 1
4L − 1

4L2 + 1
4 as the upper bound.

Unlike previous derivations, this bound is not tight for N ≡ 0 (mod 4). For
N ≡ 2 (mod 4) and N ≡ 1 (mod 2), ∆

′
2(

L−3
2 ) and ∆

′
3(

L−3
2 ), correspondingly,

form tighter upper bounds presented in Table III.
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TABLE I from [2]
Underloaded Signature Set (K ≤ L)

Processing Gain Number of Users Lower Bound on TSC

L ≡ 0 (mod 4) Any K K

K ≡ 0 (mod 2) K + 2K(K−2)
L2L ≡ 2 (mod 4)

K ≡ 1 (mod 2) K + 2
(

K−1
L

)2

L ≡ 1 (mod 2) Any K K + K(K−1)
L2

Overloaded Signature Set (K ≥ L)
Number of Users Processing Gain Lower Bound on TSC

K ≡ 0 (mod 4) Any L K2

L

L ≡ 0 (mod 2) K2

L + 2L−2
LK ≡ 2 (mod 4)

L ≡ 1 (mod 2) K2

L + 2
(

L−1
L

)2

K ≡ 1 (mod 2) Any L K2

L + L−1
L
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TABLE II
OVERLOADING OF TSC-OPTIMAL SETS

Signature
Length

BaseTSC−
optimalSet

Add − on
Signatures

Lower Bound on TSC

L ≡ 0 (mod 4) (L, L) 1 ≤ N ≤ L L + 3N

L ≡ 2 (mod 4) (L + 2, L) 1 ≤ N ≤ L + 2

(L+2)2

L
+ N +

2(N−1)2

L2 +
2N(L+2)

L
,

N ≡ 1 (mod 2);
(L+2)2

L
+ N +

2N(N−1)

L2 +
2N(L+2)

L
,

N ≡ 0 (mod 2)

L ≡ 3 (mod 4) (L + 1, L) 1 ≤ N ≤ L + 1
(L+1)2

L
+ N +

N(N−1)

L2 +
2N(L+1)

L

L ≡ 1 (mod 4) (L − 1, L) 1 ≤ N ≤ L − 2
L − 1 + (L−1)(L−2)

L2 + N+
N(N−1)

L2 + 2N
L2 (L − 2)(L − 1)
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TABLE III
UPPER BOUNDS ON TSC(S) − minTSC

(tight for (K ≡ 0 (mod 4), L ≡ 0, 2, 3 (mod 4)) and (K ≡ 1 (mod 2), L ≡ 1 (mod 4)))

K ≡ 0 (mod 4) K ≡ 2 (mod 4) K ≡ 1 (mod 2)

L ≡ 0 (mod 4) L
4

L
4
− 2L−2

L
L
4 − L−1

L

L ≡ 2 (mod 4) L
4 − 1

L − 2
L2 + 1

2

L
4 − 1

L − 2
L2

+ 1
2 − 2L−2

L

L
4 − 1

L − 2
L2

+ 1
2 − L−1

L

L ≡ 3 (mod 4) L
4 − 1

4L − 1
4L2 + 1

4

L
4 − 1

4L − 1
4L2

+ 1
4 − 2

(
L−1

L

)2
L
4 − 1

4L − 1
4L2

+ 1
4 − L−1

L

L ≡ 1 (mod 4) L
4 − 1

4L − 1
4L2 + 1

4

L
4 − 1

4L − 1
4L2

+ 1
4 − 2

(
L−1

L

)2
L
4 − 1

4L − 1
4L2

+ 1
4 − L−1

L
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S =




+ + + + + + + + + + + + + + + + + + +
+ − + − + − + − + − + − + − + − + − −
+ + − − + + − − + + − − + + − − − + −
+ − − + + − − + + − − + + − − + + + −
+ + + + − − − − + + + + − − − − + + +
+ − + − − + − + + − + − − + − + + − −
+ + − − − − + + + + − − − − + + − + −
+ − − + − + + − + − − + − + + − + + −
+ + + + + + + + − − − − − − − − + + +
+ − + − + − + − − + − + − + − + + − −
+ + − − + + − − − − + + − − + + − + −
+ − − + + − − + − + + − − + + − + + −
+ + + + − − − − − − − − + + + + + + +
+ − + − − + − + − + − + + − + − + − −
+ + − − − − + + − − + + + + − − − + −
+ − − + − + + − − + + − + − − + + + −




Fig. 14: (19, 16) conditionally TSC-optimal signature set.
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Fig. 15: TSC of proposed conditionally optimized signature set (under Case 1)
against bound (L = 16, 1 ≤ N ≤ 16).
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Fig. 16: TSC of proposed conditionally optimized signature set (under Case 2)
against bound (L = 14, 1 ≤ N ≤ 16).
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Fig. 17: TSC of proposed conditionally optimized signature set (under Case 3)
against bound (L = 15, 1 ≤ N ≤ 16).
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Fig. 18: TSC of proposed conditionally optimized signature set (under Case 4)
against bound (L = 17, 1 ≤ N ≤ 15).
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VI. New Bounds on the Aperiodic Total Squared

Correlation of Binary Signature Sets and
Optimal Designs

This work has been presented at IEEE ICC 2007, Scotland, UK.
In code-division multiple access (CDMA) systems, each of the K participat-

ing users is assigned a distinct spreading sequence or signature sk ∈ CL, ||sk|| =
1, k = 1, 2, . . .K. Organizing the K signatures as the columns of a matrix, we
define the signature matrix

S 4
= [s1 s2 . . . sK ] ∈ C

L×K . (134)

In synchronous CDMA communications over ideal Nyquist channels, we are
interested in using signature sets with minimum total squared correlation (TSC)

TSC(S)
4
=

K∑

i=1

K∑

j=1

∣∣sH
i sj

∣∣2 (135)

where H denotes the Hermitian operator. For overloaded (K ≥ L) complex/real-

valued signature sets S ∈ CL×K or RL×K , TSC(S) ≥ K2

L [1] (of course,

TSC(S) ≥ K if K < L). Overloaded (K ≥ L) sets with TSC equal to K2

L
have been known as Welch-bound-equality (WBE) sets. A few algorithms and
studies for the design of complex or real WBE signature sets can be found in
recent literature.

In digital transmission systems, however, it is necessary to have finite-alphabet
signature sets. Recently, new bounds were derived on the TSC of binary antipo-
dal signature sets together with optimal designs for arbitrary signature lengths
and set sizes [2]-[4]. The sum capacity, total asymptotic efficiency, and maxi-
mum squared correlation of minimum-TSC optimal binary sets were evaluated
in [5]. The sum capacity of several other signature set designs under potentially
a binary or quaternary alphabet was examined in [6]. In this paper, we deal
strictly with binary antipodal signatures represented as (unnormalized) column

vectors in {±1}L
.

When asynchronous code-division multiplexing is attempted and/or the chan-
nel exhibits multipath behavior, apart from the total squared correlation be-
tween signatures we are also concerned about the individual periodic and ape-
riodic correlation values between the signatures. For notational simplicity, we

define aT
k|l ∈ {0,±1}1×(2L−1)

by

a
T
k|l

4
= [0 . . . 0︸ ︷︷ ︸

l

sk(1) sk(2) . . . sk(L) 0 . . . 0︸ ︷︷ ︸
L−1−l

], l = 0, 1, . . . , 2L − 2, (136)

to represent the zero-padded-by-(L-1) cycli-shifted-by-l version of sT
k ∈ {±1}1×L

,
k = 1, 2, . . . ,K (T denotes the transpose operator and sk(i), i = 1, 2, . . . , L,
k = 1, 2, . . . ,K, refers to the ith element of vector sk). Next, we define the
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zero-padded cyclic extension matrix Szpc ∈ {0,±1}(2L−1)×K(2L−1)
of the signa-

ture set S ∈ {±1}L×K
as

Szpc
4
= [a1|0 a2|0 . . . aK|0 a1|1 a2|1 . . . aK|1 . . . . . .

a1|2L−2 a2|2L−2 . . . aK|2L−2]
(137)

and the aperiodic total squared correlation (ATSC)8 of the signature set S as
the total squared correlation (TSC) of the matrix Szpc

ATSC(S)
4
= TSC(Szpc). (138)

Then,

ATSC(S) =
K∑

k=1

2L−2∑

l=0

∣∣∣aT
k|0ak|l

∣∣∣
2

+ (2L − 1)
K∑

i=1

K∑

j=1,i6=j

2L−2∑

l=0

∣∣∣aT
i|0aj|l

∣∣∣
2

. (139)

The first term in (139) contains all aperiodic auto-correlation contribu-
tions; the second term contains all aperiodic cross-correlation contributions. For
complex/real-valued signature sets S ∈ CL×K or RL×K , ATSC(S) ≥ K2L2(2L−
1) directly by the TSC bound in [1] and our formulation (4),(5). Hence, these
constructions establish tightness of the above ATSC bound over the binary do-
main for those specific cases.

In our work, we first derived new lower bounds on the ATSC of binary
signature sets for all possible values of K (number of signatures) and L (sig-
nature length). Then, we presented optimal designs for several (K,L) pairs.
The designs are based on Hadamard matrix transformations and serve as proof-
by-construction for the tightness of the corresponding ATSC bounds. The new
bounds and designs have already been publiced and presented in the 2007 IEEE
International Conference on Communications (ICC).

A. Discussion and Examples

The optimal design cases that we produced constitute proof-by-construction of
the tightness of our corresponding ATSC bounds. Under the KL ≡ 0 (mod 4)
design case, we relied significantly on ACS literature; new advancements have
been made under the KL ≡ 2 (mod 4) and KL ≡ 1 (mod 2) design cases. To
acquire a quantitative feeling of the coverage of the presented designs, if we
restrict the domain of K,L to {1, 2, . . . , 256} (at present, it does not appear of
practical interest to consider code-division applications outside this parameter
range), we can calculate that Underloaded Cases 1 through 6 and Overloaded
Cases 1 through 4 together represent 27.91% of all possible combination pairs
(K,L) ∈ {1, 2, . . . , 256}2

. Maximum coverage in the number of users is available

8Another signature set correlation metric of interest is the periodic total squared correlation
(PTSC) which is lower bounded by K2L3 for complex/real-valued signature sets S ∈ CL×K

or RL×K [1],[10],[9]. Recently, new lower bounds on the PTSC of binary antipodal signature
sets were derived, together with optimal designs for many signature lengths and set sizes, in
[9],[10].
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in overloaded systems when L ∈ M1,MF , i.e. optimal signature sets are available
for all values of K > L.

Certainly, tightness of the bounds and optimal ATSC designs under the
remaining cases is an important open research problem. Two results need to be
highlighted in this regard; the non-existence of Barker sequences for 60 < L <
1022 [14] and the non-existence of (2, L) ACS sets if all prime divisors of L are
not congruent to 1 (mod 4).

Since the ATSC of each signature set that we constructed equals the corre-
sponding lower bound, by our own Theorem Number 2 all designs are jointly
ATSC- and PTSC-optimal.9 In addition, direct comparison of our ATSC-
optimal designs with the TSC bounds and optimal sets in [2] shows that Un-
derloaded Cases 1 and 2 when K is a power of 2, Underloaded Case 3(i), and
Overloaded Cases 1 through 4 are triple, ATSC-, PTSC- and TSC-optimal.
This remarkable conclusion captures and demonstrates the inherent robustness
of these binary designs.

We will now establish that the familiar Gold and “small” or “large” Kasami
sets [15], [16], which have been widely used for their correlation properties [8],
are not ATSC optimal in general. It suffices to find at least one (K,L) signature
set in the Gold/Kasami-compatible range that has lower (preferably minimum)
ATSC than the corresponding Gold/Kasami set in order to prove sub-optimality
of the latter. Fig. 19(a) provides an example of a Gold set G31×24 with ATSC =
43474212; Fig. 19(b) provides an optimal signature set Sopt

31×24 designed under
our Underloaded Case 3(ii) with minimum ATSC = 33765696. In Fig. 20(a)
we show a (2, 15) signature set with lower (but not minimum) ATSC = 33292
than a (2, 15) small-set Kasami design, shown in Fig. 20(b), with ATSC =
34220. We follow with Fig. 21 which provides a large-set Kasami design Kls

15×8

with ATSC = 441264 and an optimal signature set Sopt
15×8 designed under our

Underloaded Case 3(ii) with minimum ATSC = 417600.
We conclude with an example of an overloaded ATSC-optimal design Sopt

14×25

given in Fig. 22. The set is designed under our Overloaded Case 2 and has
minimum ATSC value ATSC = 3308526.

B. Conclusions

We derived lower bounds on the aperiodic total squared correlation of binary
antipodal signature sets for any set size (K,L). We provided optimal designs for
a range of (K,L) pairs that establish the tightness of the corresponding lower
bounds. The constructions include underloaded (K ≤ L) and overloaded (K >
L) design cases and cover, as an example, 27.91% of all possible combinations
of K,L in {1, 2, . . . , 256}.

Side results of this work include establishing that maximal-merit-factor se-
quences (and, hence, Barker sequences) are ATSC-optimal and that neither
Gold nor small- or large-set Kasami sequences are ATSC-optimal in general.

9The Barker sequence g4 applicable to Underloaded Case 5 and Overloaded Cases 3 and
4 is double, ATSC- and PTSC-optimal.
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In view of these findings, the developed ATSC-optimal sets take precedence in
code-division multiplexing applications.
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G31×24 =




− + − − − − + + + + + − − + − − + − − − − − + +
− + + − − − − + + + + + − − + − − + − − − − − +
− + + + − − − − + + + + + − − + − − + − − − − −
− − + + + − − − − + + + + + − − + − − + − − − −
− + − + + + − − − − + + + + + − − + − − + − − −
− + + − + + + − − − − + + + + + − − + − − + − −
+ + − − + − − − + + + + − − − − − + + − + + − +
− − + + + − + + + − − − − + + + + + − − + − − +
+ + + − − − + − − − + + + + − − − − − + + − + +
− + + − + + + − + + + − − − − + + + + + − − + −
− + + + − + + + − + + + − − − − + + + + + − − +
+ − − − − + − − − + − − − + + + + − − − − − + +
+ − + − − − + − − − + − − − + + + + − − − − − +
+ − + + − − − + − − − + − − − + + + + − − − − −
− − − − − + + + − + + + − + + + − − − − + + + +
− − − − − − + + + − + + + − + + + − − − − + + +
− + − − − − − + + + − + + + − + + + − − − − + +
+ − − + + + + + − − − + − − − + − − − + + + + +
− − − + − − − − − + + + − + + + − + + + − − − −
− + − − + − − − − − + + + − + + + − + + + − − −
− − + − − + − − − − − + + + − + + + − + + + − −
− − − + − − + − − − − − + + + − + + + − + + + −
− + − − + − − + − − − − − + + + − + + + − + + +
+ + − + + − + + − + + + + + − − − + − − − + − −
+ + − − + + − + + − + + + + + − − − + − − − + −
+ + − − − + + − + + − + + + + + − − − + − − − +
+ + − − − − + + − + + − + + + + + − − − + − − −
+ − − − − − − + + − + + − + + + + + − − − + − −
− − − + + + + + − − + − − + − − − − − + + + − +
+ − + + − − − − − + + − + + − + + + + + − − − +
− − − − − + + + + + − − + − − + − − − − − + + +




(a)

Sopt
31×24 =




+ + + + + + + + + + + + + + + + + + + + + + + +
+ − − + − − − + + + − + + − − + − − − + + + − +
+ + − − + − − − + + + − + + − − + − − − + + + −
+ − + − − + − − − + + + + − + − − + − − − + + +
+ + − + − − + − − − + + + + − + − − + − − − + +
+ + + − + − − + − − − + + + + − + − − + − − − +
+ + + + − + − − + − − − + + + + − + − − + − − −
+ − + + + − + − − + − − + − + + + − + − − + − −
+ − − + + + − + − − + − + − − + + + − + − − + −
+ − − − + + + − + − − + + − − − + + + − + − − +
+ + − − − + + + − + − − + + − − − + + + − + − −
+ − + − − − + + + − + − + − + − − − + + + − + −
+ + + + + + + + + + + + + + + + + + + + + + + +
− + + − + + + − − − + − − + + − + + + − − − + −
+ + − − + − − − + + + − + + − − + − − − + + + −
− + − + + − + + + − − − − + − + + − + + + − − −
+ + − + − − + − − − + + + + − + − − + − − − + +
+ + + − + − − + − − − + + + + − + − − + − − − +
+ + + + − + − − + − − − + + + + − + − − + − − −
− + − − − + − + + − + + − + − − − + − + + − + +
− + + − − − + − + + − + − + + − − − + − + + − +
− + + + − − − + − + + − − + + + − − − + − + + −
+ + − − − + + + − + − − + + − − − + + + − + − −
− + − + + + − − − + − + − + − + + + − − − + − +
+ + + + + + + + + + + + − − − − − − − − − − − −
+ − − + − − − + + + − + − + + − + + + − − − + −
+ + − − + − − − + + + − − − + + − + + + − − − +
+ − + − − + − − − + + + − + − + + − + + + − − −
+ + − + − − + − − − + + − − + − + + − + + + − −
+ + + − + − − + − − − + − − − + − + + − + + + −
+ + + + − + − − + − − − − − − − + − + + − + + +




(b)

Fig. 19. (a) G31×24 Gold set with ATSC = 43474212. (b) Optimal signature set

Sopt
31×24 designed under Underloaded Case 3(ii) with ATSC = (24)2(31)2(2(31) − 1) =

33765696.
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Kss
15×2 =




− −
− +
− +
+ +
− +
− +
+ +
+ −
− +
+ +
− +
+ −
+ +
+ −
+ −




(a)

S15×2 =




− +
+ +
+ +
+ −
− +
+ +
+ −
− −
− +
+ −
− +
+ −
− −
− −
− −




(b)

Fig. 20. (a) Kss
15×2 small-set Kasami with ATSC = 34220. (b) Numerically generated

S15×2 signature set with ATSC = 33292.

Kls
15×8 =




+ − − + + − − +
+ + − + − − + −
− + − − + − + +
− − − + + − − +
+ + − + − + − +
− − + + − − + +
− − − + + + + −
− − + − + + − +
− + − − + + − −
− − − + + − − +
+ − + − + − + −
+ − + + − + − −
− − − + + + + −
− − + − + − + −
+ − + + − − + +




(a)

Sopt
15×8 =




+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + + + + +
− + − + − + − +
+ + − − + + − −
− + + − − + + −
+ + + + + + + +
+ − + − + − + −
− − + + − − + +
− + + − − + + −
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +




(b)

Fig. 21. (a) Kls
15×8 large-set Kasami with ATSC = 441264. (b) Optimal Sopt

15×8

designed under Underloaded Case 3(ii) with ATSC = (8)2(15)2(2(15)− 1) = 417600.

Sopt
14×25 =




+ + + + + + + + + + + + + + + + + + + + + + + + +
+ − − + − − − + + + − + + − − + − − − + + + − + +
+ + − − + − − − + + + − + + − − + − − − + + + − −
+ − + − − + − − − + + + + − + − − + − − − + + + +
+ + − + − − + − − − + + + + − + − − + − − − + + −
+ + + − + − − + − − − + + + + − + − − + − − − + +
+ + + + − + − − + − − − + + + + − + − − + − − − −
+ − + + + − + − − + − − + − + + + − + − − + − − −
+ − − + + + − + − − + − + − − + + + − + − − + − +
+ − − − + + + − + − − + + − − − + + + − + − − + +
+ + − − − + + + − + − − + + − − − + + + − + − − −
+ − + − − − + + + − + − + − + − − − + + + − + − −
+ + + + + + + + + + + + − − − − − − − − − − − − −
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Fig. 22. Optimal signature set Sopt
14×25 designed under Overloaded Case 2 with mini-

mum ATSC = (25)2(14)2(2(14) − 1) + (2(14) − 1)(3(14) − 4) = 3308526.

86



VII. Upward Scaling of Minimum-TSC Binary

Signature Sets

The work has been published in the IEEE Communications Letters, Nov. 2007.
In multiuser communication systems that follow the code-division multi-

plexing paradigm, multiple signals are transmitted simultaneously in time and
frequency. Each signal -potentially associated with a distinct user- is assigned
an individual signature (spreading code). A fundamental measure of the quality
of the code-division communication link is the total squared correlation (TSC)
[1] over the set of assigned signatures. For a K-signal system with signature
length L, if the signature set is denoted by S = {s1, s2, · · · , sK}, ‖si‖ = L,
i = 1, 2, · · · ,K, then the TSC of the signature set S is defined as the sum of
the squared magnitudes of all inner products between signatures,

TSC(S)
4
=

K∑

i=1

K∑

j=1

|sT
i sj |2. (140)

In the theoretical context of TSC optimized signature sets that are real (or
complex) valued, one may consider the early work of Welch [1] followed by
representative works in [2]-[13].

Findings in [1]-[13] constitute only pertinent performance bounds for digital
communication systems with digital signatures. Recently, new bounds on the
TSC of binary signature sets were presented [14] that led to minimum-TSC
optimal binary signature set designs for almost all10 signature lengths and set
sizes [14]-[14]. The sum capacity, total asymptotic efficiency, and maximum
squared correlation of the minimum-TSC binary sets were evaluated in [15]. The
user capacity of minimum and non-minimum-TSC binary sets was identified and
compared in [18]. A procedure to find minimum-TSC binary signature sets with
low cross-correlation spectrum was presented in [19]. A binary code allocation
scheme is examined in [20] and tested against the Karystinos-Pados (KP) bounds
and sequence sets [14].

The technical problem that we consider in this letter is upward scaling of
an overloaded (K > L) min-TSC binary set. Consider the min-TSC optimal
constructions in [14]-[14] for any K = L (fully loaded systems). Subsets of
K < L signatures maintain TSC optimality and signatures can be returned
and reassigned without loss of optimality. This is not the case unfortunately,
in general, given a min-TSC overloaded set (K,L) where K > L. Addition of
a signature, for example, may require complete redesign/reassignment of the
(K + 1, L) set. In this letter, motivated by our prior work in [21], we develop a
novel scheme that returns a binary signature for the new signal in the system
that lies near the continuous-valued arcs of least TSC increase. The quality of
the new binary signature design is tested directly against the KP TSC bound.

10The case K = L ≡ 1 (mod 4) remains the only open problem at present in min-TSC
optimal binary set design [14]-[14].
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The rest of this paper is organized as follows. Section II presents our formu-
lation of the optimization problem under consideration. The proposed algorithm
is presented in Section III. Studies and comparisons with the TSC bound are
included in Section IV.

A. Formulation

We consider a code division multiplexing system with code length L and K ≥ L
signals (overloaded). The K signals utilize a minimum TSC optimal binary sig-
nature set S designed according to [14]-[14], S = {s1, s2, · · · , sK}, si ∈ {±1}L,
i = 1, · · · ,K. When a new signal enters this system with signature sK+1 ∈
{±1}L, the TSC of the K + 1 signatures given the signatures of the K preex-
isting signals is

TSCK+1|K =

K+1∑

i=1

K+1∑

j=1

|sT
i sj |

2

=

K∑

i=1

K∑

j=1

|sT
i sj |

2 + |sT
K+1sK+1|

2 + 2

K∑

i=1

|sT
K+1si|

2

= TSCK + L2 + 2sT
K+1

K∑

i=1

sis
T
i sK+1 (141)

where TSCK denotes the TSC of the K preexisting signals in the system that
utilize a minimum TSC binary signature set. If we denote the autocorrelation
matrix of the preexisting K signatures by

RK =

K∑

i=1

sis
T
i , (142)

(141) shows that conditional minimization of TSCK+1|K with respect to sK+1

for fixed (min-TSC-valued) TSCK reduces to

sK+1 = arg min
si∈{±1}L

sT RKs. (143)

Exhaustive search over all 2L vectors in {±1}L to find the one that minimizes
(143) is, of course, unacceptable computationally even for moderate values of L.
Below, we propose a low cost search algorithm that creates a signature candidate
list of size linear in L.

B. Proposed Algorithm

Let f(s) denote the cost function in (143) that we try to minimize,

f(s)
4
= sT RKs. (144)
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We relax, for a moment, our requirement for binary antipodal signature (se-
quence) alphabet and assume, instead, that s is real-valued with the same norm,
s ∈ RL, sT s = L. Then, the real-field optimization problem becomes

s
(r)
K+1,opt = arg min

s∈RL,sT s=L
f(s) (145)

where the superscript (r) indicates that s
(r)
K+1,opt is real-valued. The optimiza-

tion in (247) is carried over a hypersphere in RL of radius L centered at the
origin.

Let {q1,q2, · · · ,qL} be the L eigenvectors of RK with corresponding eigen-
values λ1 ≤ λ2 ≤ · · · ≤ λL. The real-valued sequence that minimizes the right-
hand-side of (247) is well known and equal to the eigenvector that corresponds
to the minimum eigenvalue of the matrix RK ,

s
(r)
K+1,opt = arg min

s∈RL,sHs=L
f(s) = q1. (146)

Consider now the following L− 1 lines in RL,

q1 − ρqi, i = 2, · · · , L, ρ ∈ R. (147)

The lines in (249) lie on the plane that is tangent to the searching hypersphere,
pass through the real minimizer q1, and define mutually orthogonal directions
of least increase in the cost function f(s), s ∈ RL, from the optimum point

s
(r)
K+1,opt = q1. That is, algebraically, for fixed ρ and i = 2, 3, · · · , L,

qi = arg min
v∈Ωv

{f(q1) − f(
q1 − ρv√

1 + ρ2
)} (148)

where Ωv = {v : vT qj = 0, j = 1, 2, · · · , i− 1,vT v = 1}.
Projection of the above least-increase lines onto the searching hypersphere

results in the slowest increase arcs given by

q1 − ρqi√
1 + ρ2

, i = 2, · · · , L, ρ ∈ R. (149)

The slowest increase arcs in (250) trace the searching hypersphere, extend from

−qi to qi, i = 2, · · · , L, and pass through the optimum point s
(r)
K+1,opt. On each

of these arcs, the function f(s), s ∈ RL, takes values in [λ1L, λiL], i = 2, · · · , L,
respectively. Our objective is to identify the binary sequences that are closest in
the l2-sense to the above least-increase arcs [22]. It is important to note that for
any given i ∈ {2, 3, · · · , L}, the binary sequences that are closest in the l2-sense
to the arc q1−ρqi√

1+ρ2
, ρ ∈ R, can be expressed as sgn(q1−ρqi); the set of all binary

signatures of the form sgn(q1 − ρqi), ρ ∈ R, has cardinality at most L+ 1.
Our proposed binary signature search algorithm is described below.

Algorithm
For i = 2, · · · , P (P ≤ L) do:
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Step 1
Calculate

ρn
4
= q1,n/qi,n, n = 1, · · · , L, (150)

where qi,n, n = 1, · · · , L, is the nth element of the vector qi. The points in
(150) define non-overlapping intervals in R such that, for any given i, signatures
of the form sgn(q1 − ρqi) that correspond to values of ρ in adjacent intervals
have opposite signs in exactly one coordinate. Let ρ′1 < ρ′2 < · · · < ρ′L be a
rearrangement of ρ1, ρ2, · · · , ρL in ascending order and let u be the index of the
first positive element in the ordered sequence ρ′1, ρ

′
2, · · · , ρ′L, i.e. ρ′u−1 < 0 < ρ′u,

u ∈ {1, 2, · · · , L}.
Step 2

Find the binary sequence that is closest to the arc q1−ρqi√
1+ρ2

for each interval of

ρ, i.e. for ρ ∈ (−∞, ρ′1), (ρ
′
1, ρ

′
2), · · · , (ρ′L−1, ρ

′
L), (ρ′L,∞). There are L + 1 bi-

nary sequences in total denoted as s0,i
K+1, s

1,i
K+1, · · · , sL,i

K+1 that can be computed
recursively,

s
0,i
K+1 = sgn[q1], (151)

s
l+1,i
K+1 = s

l,i
K+1 − 2s0,i

K+1,u+leu+l, l = 0, 1, · · · , L − u, (152)

s
l,i
K+1 = s

l+1,i
K+1 − 2s0,i

K+1,u+leu+l, l = −1,−2, · · · , 1 − u, (153)

where s0,i
K+1,u+l is the (u + l)th element of s0,i

K+1 and eu+l is the (u + l)-unit

vector in RL.
Step 3

Evaluate TSCK+1 for each binary signature sl,i
K+1 returned by Step 2, l =

0, · · · , L, and choose the binary signature that gives minimum TSC. �
The above procedure identifies and composes L+1 binary sequences for each

one of a total P − 1 (P ≤ L) slowest increase arcs11; we select the signature
that gives minimum TSC among all (P −1)L+1 candidates. Our experimental
studies indicate that P = 2 or 3 (i.e. one or two slowest increase arcs) is sufficient
to closely approximate the performance level reached when all possible slowest
increase arcs are considered (P = L).

C. Experimental Studies

We consider a code-division multiplexing system with signature length L =
16. We assume that initially there are K = 16 users (fully-loaded system)
that utilize a minimum TSC optimal binary signature set (orthogonal Walsh-
Hadamard in this trivial case).

In Fig. 29, we plot the TSC of the code-division multiplexing system (K +
1, L = 16) for K = 16 up to 31 where each (K,L) signature set is optimally
min-TSC designed by [14] and the K + 1 signature is added by the procedure
in the previous section. The quality of the resulting (K + 1, L) design is tested
against the (K + 1, L) TSC bound of [14].

11The binary sequence s
0,i
K+1 = sgn[q1] is common in all slowest increase arcs.
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Fig. 30 repeats the study for the (K + 1, L = 31) system set-up with K =
31 up to 61. As with the studies of Fig. 1, the comparison with theoretical
minimum TSC bounds is very favorable. Frequently, the resulting sequence set
is absolutely TSC optimal.
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Fig. 25: TSC of (K + 1, L = 16) signature set.
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VIII. Short-data-record Adaptive Detection

The work has been presented at the 2007 IEEE Radar Conference, Boston, MA.
In the context of an array radar application with M antenna elements (spa-

tial channels) and N pulses per coherent processing interval (CPI), optimum
signal detection in the presence of spatial and temporal Gaussian noise requires
joint space-time matched filtering in the MN complex vector space. Since
prior knowledge of the noise covariance matrix is not available, the maximum-
likelihood sample average estimate is often used, developed from K noise only
vector samples that correspond to distinct range cells. This is the so called
secondary data set. Then, the inverse of the sample-matrix is considered as
an estimate of the inverse covariance matrix. This approach is known as the
Sample-Matrix-Inversion method (SMI) and in [1] it was shown to outper-
form the recursive least-mean-squares (LMS) adaptive implementation of the
matched filter (MF) processor in terms of convergence rate and small-sample
output SNR characteristics. Still, it was found that K ≥ 2MN independent
and identically distributed (i.i.d.) training data samples are needed to maintain
with probability 1/2 a loss lower than or equal to 3dB compared to the ideal
MF. Simple variance normalization of the MF decision statistic led to a Con-
stant False Alarm Rate (CFAR) test [2] for Neyman-Pearson detection. System
optimization in the generalized likelihood ratio (GLR) sense was pursued in [3]
and analyzed in [4]. The resulting test statistic offers embedded CFAR behav-
ior, converges to the ideal MF solution at least in probability as the number of
secondary data K grows, and it is shown in [2] to outperform the SMI approach
for K = 2MN , except for high SNR regions.

It is important to note that the SMI and GLR tests are both asymptotically
optimal to the extent that they converge in a probabilistic sense to the optimum
ideal MF as the size of the secondary data set grows to infinity. However, for
finite sample support no optimality can be claimed in either case and superior
probability of detection performance for a fixed false alarm rate is theoretically
possible by other filtering means. Moreover, both methods share the need to
invert the sample covariance matrix of the noise process.

Arguably, in airborne surveillance systems the training data size require-
ments make the practicality of these approaches questionable even for mod-
erate values of M and N . This is particularly true if we consider a highly
non-stationary, non-homogeneous [5] operating environment, typically encoun-
tered in practice, that necessitates brief data collection. In this present work,
we consider the auxiliary-vector (AV) iterative algorithm [7], [8] to develop an
infinite sequence of decision statistics. The objective is linear space-time adap-
tive processing with sample support near (or below) the space-time product
MN . The AV algorithm is a non-invasive procedure where no explicit matrix
inversion/eigen-decomposition/diagonalization is attempted. Mathematically,
it creates an infinite sequence of filters that begins from the target vector and
converges to the ideal matched filter. The development of the iterative algorithm
is founded solely on statistical signal processing principles.

The practical motivation behind the development of the AV algorithm is
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adaptive signal processing where the input autocorrelation matrix is assumed
unknown and it is sample-average estimated by a given data record. When the
autocorrelation matrix is substituted by its estimate in the recursively gener-
ated sequence of filters, the corresponding filter estimators offer the means for
effective control over the filter estimator bias versus (co-)variance trade-off [9].
Starting from the zero-variance, high-bias (for non-white inputs) target vector,
we can go all the way up to the unbiased, yet high-variance for small data record
sizes, AMF estimate and anywhere in between. As a result, adaptive filters from
this developed class are seen to outperform in probability of detection (for any
given false alarm) all known and tested adaptive detection means (including
for example the multistage Wiener filter algorithm [10], [11] which is known [7]
to be equivalent to an orthogonalized version of the AV algorithm with vector-
optimum AV weights12). It is worth mentioning that the familiar trial-and-error
tuning to problem and data-record-size specifics of the real-valued LMS gain or
RLS inverse matrix initialization constant or SMI diagonal loading parameter
that plagues field practitioners is now replaced by an automated data-based
integer choice of one of the recursively generated filters [8]. Numerical and
simulation results included in this work support the theoretical arguments and
promote the new method as the processor of choice when only small secondary
data training sets are available.

A. Signal Model and Background

We consider a narrowband uniform linear array radar with M antenna elements
(subarrays or spatial channels). We assume that each element collects the com-
plex (I/Q) return of a series of N coherent pulses for some given range cell
k = 1, . . . ,Kmax = TPRI/T , where TPRI is the pulse repetition interval and T
is the pulse duration. We organize the received data in the form of a matrix
XM×N , where X(m,n), m = 1, . . . ,M, n = 1, . . . , N , denotes the m-element,
n-pulse signal sample. The objective is to cope with system and surrounding
disturbances and detect in XM×N the presence of a desired signal of unknown
amplitude. Without loss of generality and for notational simplicity, we consider
a “vectorized” form of XM×N , where Vec(XM×N ) = xMN×1 is constructed by
sequencing all matrix columns in the form of a vector.

We begin by casting the detection problem in the context of binary hypoth-
esis testing. We denote the disturbance only hypothesis by H0 and the target
plus disturbance hypothesis by H1.

H0 : x = j + c + n

H1 : x = αv + j + c + n.
(154)

In (154), j represents a mixture of L broadband directional interferers (jammers)

12The orthogonal version of the AV algorithm with conditionally optimal AV weights as
presented in [12], [13] can still outperform the multistage Wiener filter [10], [11] under small
sample support.

95



in the far field, where j = Vec(JM×N ) with

J(m,n) =

L∑

l=1

Jl(n) ej2π(m−1)
sin θld

λ ,

n = 1, . . . , N, m = 1, . . . ,M.

(155)

We assume that Jl(n), l = 1, . . . , L, is complex white Gaussian distributed to
account for channel fading at the pulse-repetition frequency as in the model of
[14], [15]. The antenna element spacing is d and the radar carrier wavelength is
λ. The direction of arrival (DOA) θl, l = 1, . . . , L, is assumed to be uniformly
distributed in [−π/2, π/2]. We find it convenient to define the spatial frequency

fl
4
= sin θld

λ , l = 1, . . . , L, and assume that fl is uniformly distributed in [-
0.5,0.5] with proper selection of d and λ. In addition, cMN×1 in (154) accounts
for colored Gaussian noise with covariance matrix Rc and corresponds to a
radar clutter region. Spatially and temporally white disturbances are denoted
by n. The signal or “steering vector” of interest, v, is present in x under
hypothesis H1 only. Without loss of generality we assume that vHv = 1 (H
denotes the Hermitian operator) such that all energy signal characteristics are
absorbed in the unknown complex amplitude constant α. For completeness, if
v = Vec(VM×N ) then

V (m,n) =
1√
MN

e
j2π(m−1) sin θsd

λ
+j2π(n−1) 2ν

λfPR ,

n = 1, . . . , N, m = 1, . . . ,M.

(156)

In (156), θs ∈ [−π/2, π/2] is the angle of arrival of the signal (target) of interest,
ν is the target radial velocity, and fPR is the radar pulse repetition frequency.

Once again, it is convenient to define the spatial target frequency fs
4
= sin θsd

λ

and the “normalized Doppler” target frequency fD
4
= 2ν

λfPR
. In this case we

assume that fs, fD ∈ [−0.5, 0.5].
Given a data vector x that corresponds to some range cell k ∈ {1, . . . ,Kmax},

the objective is to decide in favor of H0 or H1 in a way that maximizes the
probability of detection PD = Pr{H1 decided|H1 true} subject to a given false
alarm constraint PFA = Pr{H1 decided|H0 true} ≤ ρ. The optimum decision
rule is well known [16], [17] and of the form

|wHx|
H1

≷
H0

τ (157)

where τ > 0 is the threshold parameter to be determined according to the
condition PFA = ρ and w is the linear filter defined by

w = bR−1v (158)

where b is an arbitrary positive scalar. In (158), R = EH0{xxH} where EHi
{·}

denotes the statistical expectation operation under Hi, i = 0, 1. Then the vari-
ance under H0 of the test statistic wHx is VarH0{wHx} = vHR−1v which
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implies that the modified test statistic vHR−1x√
vHR−1v

is zero-mean unit-variance

complex Gaussian distributed. As a consequence
∣∣∣ vHR−1x√

vHR−1v

∣∣∣
2

is chi-square dis-

tributed with two degrees of freedom and leads to the familiar CFAR (constant
false alarm rate) optimum decision rule

|vHR−1x|2
vHR−1v

H1

≷
H0

λ, (λ > 0). (159)

Substitution in (159) of the sample-average covariance matrix estimate R̂(K) =
1
K

∑K
k=1 xkx

H
k from K data samples from H0 defines the so called CFAR adap-

tive matched filter (AMF) detector [2]. In contrast, we recall that the generalized
likelihood ratio (GLR) test of [3] and [4] is

|vH [R̂(K)]−1x|2
vH [R̂(K)]−1v(1 + 1

K xH [R̂(K)]−1x)

H1

≷
H0

γ, (γ > 0). (160)

In the following section we revisit the auxiliary-vector (AV) algorithm [7],
[8] to develop new decision statistics that maintain the principle of linear fil-
tering for signal detection in Gaussian disturbance. Compared to AMF, GLR,
multistage Wiener filter and other approaches we achieve superior adaptation
performance, especially when we operate with small secondary data sets.

B. Auxiliary-Vector Detection

The AV algorithm generates an infinite sequence of filters {wn}∞n=0 that is
initialized at the steering vector of interest

w0 = v. (161)

At each step k + 1 of the algorithm, k = 0, 1, 2, . . . , we incorporate in wk an
“auxiliary” vector component gk+1 that is orthogonal to v (but not necessarily
orthogonal to previously generated auxiliary vectors) and weighted by a scalar
µk+1 and we form the next filter in the sequence

wk+1 = wk − µk+1gk+1. (162)

The auxiliary vector gk+1 is chosen to maximize, under fixed norm, the mag-
nitude of the cross-correlation between its output gH

k+1x and the previous filter

output wH
k x and is given by

gk+1 = Rwk − (vHRwk)v. (163)

The scalar µk+1 is selected such that it minimizes the output variance of the filter
wk+1 or equivalently minimizes the MS error between wH

k x and µ∗
k+1g

H
k+1x. The

MS-optimum µk+1 is

µk+1 =
gH

k+1Rwk

gH
k+1Rgk+1

. (164)
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The AV filter recursion is completely defined by (161)-(164). Theoretical anal-
ysis of the AV algorithm was pursued in [7]. The results are summarized below
in the form of a theorem.

Theorem 1 Let R be a Hermitian positive definite matrix. Consider the iter-
ative algorithm of eqs. (161)-(164).
(i) Successive auxiliary vectors generated through (162)-(164) are orthogonal:
gH

i gi+1 = 0, i = 1, 2, 3, . . . , (but in general gH
i gj 6= 0 for |i− j| 6= 1).

(ii) The generated sequence of auxiliary-vector weights {µn}, n = 1, 2, . . ., is
real-valued, positive, and bounded: 0 < 1

λmax
≤ µn ≤ 1

λmin
, n = 1, 2, . . . , where

λmax and λmin are the maximum and minimum, correspondingly, eigenvalues of
R.
(iii) The sequence of auxiliary vectors {gn}, n = 1, 2, . . ., converges to the 0
vector: lim

n→∞
gn = 0.

(iv) The sequence of auxiliary-vector filters {wn} , n = 1, 2, . . . , converges to

the optimum filter: lim
n→∞

wn = R−1v
vHR−1v

. 2

If R is unknown and sample-average estimated from a data record of K
samples, then Theorem 1 shows that

ŵn(K) −→
n→∞

ŵ∞(K) =

[
R̂(K)

]−1

v

vH
[
R̂(K)

]−1

v
(165)

where ŵ∞(K) is the widely used filter estimator known as the sample-matrix-
inversion (SMI) filter [1]. The output sequence begins from ŵ0(K) = v, which
is a 0-variance, fixed-valued, estimator that may be severely biased (ŵ0(K) =

v 6= R−1v
vHR−1v

) unless R = σ2I for some σ > 0. In the latter trivial case, ŵ0(K) is
already the perfect filter. Otherwise, the next filter estimator in the sequence,
ŵ1(K), has significantly reduced bias due to the optimization procedure em-
ployed at the expense of non-zero estimator (co-)variance. As we move up
in the sequence of filter estimators ŵn(K), n = 0, 1, 2, . . ., the bias decreases
rapidly to zero while the variance rises slowly to the SMI (ŵ∞(K)) levels (cf.
(165)).

For the proposed AV sequence of filters wn and any number of auxiliary vec-

tors n = 0, 1, 2, . . . , the decision statistics
wH

n x√
wH

n Rwn

are 0 -mean, unit-variance

complex Gaussian. Then,
| wH

n x |2
wH

n Rwn

H1

≷
H0

λ (166)

defines a CFAR test in parallel to the optimum matched-filter test in (159). In
adaptive implementations of wn where the covariance matrix R is estimated
from a data record of K samples, the adaptive auxiliary-vector test becomes

| ŵn(K)Hx |2
ŵn(K)HR̂ŵn(K)

H1

≷
H0

λ̂(K). (167)
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Fig. 23: PD vs SINR (one-lag temporal clutter correlation 0.4).

The test is asymptotically CFAR (as K → ∞, λ̂(K) → λ in (159) for the
optimum normalized matched-filter test for any given false alarm rate PFA).
For finite training sets it qualifies as Cell-Averaging CFAR (CA-CFAR), as seen
by the test denominator.

As a brief summary, the sequence of calculations for the design of the joint
S-T auxiliary-vector filter estimator is as follows. The data record of K joint
S-T input data vectors x1,x2, . . . ,xK is utilized to obtain the estimate R̂(K)
of R. Then, the sequence of AV filter estimators ŵ0(K), ŵ1(K), ŵ2(K), . . . is
generated by the recursive algorithm of (161)-(164) with the true autocorrelation

matrix R substituted by the estimate R̂(K). A specific AV filter estimator
ŵn0(K) from the sequence can be selected by the cross-validation criterion of
Qiao and Batalama [8] and used for detection according to (167).

C. Numerical and Simulation Studies

In this section we support and illustrate the preceding theoretical developments
through two representative case-studies based on the hypothesis testing problem
in (154). In all cases we assume presence of a mixture of 3 (three) broadband

interferers with Jammer-to-Noise-Ratio JNR = E{|jl|2}
σ2 ≈ 35dB, l = 1, 2, 3. The

jammers follow the model in (155) and the spatial frequency fl, l = 1, 2, 3, is
randomly drawn from the uniform [−0.5, 0.5] distribution. The “peak” clutter

(colored Gaussian noise) to noise ratio is fixed at CNR =
σ2

c

σ2 = 40dB. The
false alarm rate is set at PFA = .01 and for simulation purposes threshold and
probability of detection estimates PD are based on 10, 000 samples from H0

and H1 respectively. All presented results are averages over 100 independent
Monte-Carlo runs for arbitrarily chosen target vectors and jammers. PD values
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Fig. 24: PD vs SINR (one-lag temporal clutter correlation 0.6).

are plotted as a function of the total SINR defined by

SINR
4
= | α |2 vHR−1v. (168)

We assume a radar array system with M = 5 antenna elements (channels) and
N = 12 pulses per coherent processing interval (CPI). the GLR test, and the
adaptive AV filter wn in (13), all for secondary data sets of size K = MN =
60. All studies include the ideal matched filter as a reference point, and the
adaptive matched filter, GLR test, multistage Wiener filter, and AV filter, all
for secondary data sets of size K = MN = 60.

Figures 27 and 28 present probability of detection versus SINR results for
two different clutter scenarios generated as in [18] with normalized one-lag tem-
poral clutter correlation 0.4 and 0.6, respectively. We note that relatively low
temporal clutter correlation (low pulse-repetition frequency fPR and/or high
clutter velocity) results to benign eigenvalue distributions. We observe that in
both cases the proposed AV filter wn in (161)-(164) outperforms the multistage
Wiener filter and offers significant performance gains over the adaptive matched
filter and the GLR test.
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IX. Subspace Direction Finding with an Auxiliary-

Vector Basis

This work has been presented at the 2005 SPIE Defense and Security Sympo-
sium, Orlando, FL, and has been published at the IEEE Transactions on Signal
Processing, Feb. 2007.

Solutions for the classical direction-of-arrival (DOA) estimation problem
can be broadly categorized into maximum-likelihood-type (ML) algorithms [1],
which are based on techniques for the maximization of the probability density
function of the received signal, and subspace algorithms, which are based on
the decomposition of the autocovariance matrix of the received signal. Among
the most successful and popular subspace algorithms are the MUSIC [2] and
ESPRIT [3] procedures. In general, ML-type algorithms have superior perfor-
mance compared to subspace-based techniques when the signal-to-noise (SNR)
ratio is small or the number of snapshots is small. Also, the performance of
subspace-based estimators degrades substantially in the case of correlated sig-
nal sources as compared to ML schemes.

In this work, we attempt to exploit the structure of the received data auto-
covariance matrix in a new way. When K distinct signals in space impinge on
M antenna elements (K < M), the input autocovariance matrix consists of a
rank K signal subspace and a rank M−K noise subspace. Using the concept of
maximum cross-correlation auxiliary vectors (AV’s) [4], we create an extended
non-eigenvector signal subspace basis of rank K+1 (eigen decomposition is not
carried out at all). The extended signal subspace encompasses the true signal
subspace of rank K and the scanning vector dimension itself. Then, the pro-
posed DOA estimation algorithm simply looks for the collapse of the rank of
the extended signal subspace from K+1 to K when the scanning vector falls in
the signal subspace. Extensive simulation studies demonstrate that significant
resolution performance improvements may be gained over MUSIC, ESPRIT,
and ML schemes for both uncorrelated and correlated sources.

A. Signal model

Consider a uniform linear array (ULA) with M elements and let θ represent
the DOA of an impinging source whose array response vector is given by

sθ = [1, e−j ω
c

d sinθ, . . . , e−j(M−1) ω
c

d sinθ ]H (169)

where ω is the carrier frequency, c is the signal propagation speed, d is the inter-
element spacing, and H denotes the Hermitian operator. When K narrowband
signals (K <M) on the same carrier impinge on the array with distinct angles
of arrival θ1, θ2, . . . , θK , the received signal snapshot at time i, ri ∈ CM , is of
the form

ri = Axi + ni, i = 1, . . . , N, (170)

where AM×K
4
= [sθ1 , . . . , sθK

], xi ∈ CK is the zero mean composite source
signal vector, and ni ∈ CM represents Gaussian noise with mean zero and au-
tocorrelation matrix E{nnH} = σ2I (E{·} denotes statistical expectation). To
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avoid mathematical -and presentation- ambiguities, the array response vectors
sθ1 , . . . , sθK

are considered to be linearly independent, i.e. the inter-element
spacing is no greater than half the carrier wavelength. The autocovariance ma-
trix of the array input is

R
4
= E{rrH} = ARsA

H + σ2
I (171)

where

Rs
4
= E{xxH}. (172)

The source signal autocovariance matrix Rs is diagonal when the sources are un-
correlated and is non-diagonal and non-singular for partially correlated sources.
Complete knowledge of R cannot be assumed usually; instead, we may use as
necessary the sample-average estimated array input autocovariance matrix given
by

R̂ =
1

N

N∑

i=1

rir
H
i (173)

where N is the available observation data record size.

B. Auxiliary-vector extended signal subspace basis

In this section, we consider the signal model presented above and develop a
novel non-eigenvector basis that spans the signal subspace extended in dimen-
sion by the DOA scanner vector sθ, θ ∈ (−90o, 90o). Essential theoretical
background for this derivation is provided by the adaptive filtering work in [4].
Details follow.

In contrast to the work in [4], here we define the initial vector in our basis
calculations v0(θ) as follows:

v0(θ)
4
=

Rsθ

‖Rsθ‖
. (174)

When the sources are uncorrelated and it happens to be θ = θj for some j ∈
{1, . . . ,K},

Rsθj
=
(
E
{
x

2[j]
}

M + σ2
)
sθj

+

K∑

k=1, k 6=j

E
{
x

2[k]
}

s
H
θk

sθj
sθk

. (175)

From (175) we can see that v0(θj) is a linear combination of theK array response
vectors and lies in the true signal subspace of dimension K. However, when
θ 6= θj , j = 1, . . . ,K,

Rsθ =
K∑

k=1

E
{
x

2[k]
}
s

H
θk

sθ sθk
+ σ2

sθ (176)

and v0(θ) is a linear combination of the K + 1 array response vectors and lies
in the extended signal subspace of dimension K+1 which encompasses the true
signal subspace.

Having defined v0(θ) (the first vector in our basis to be formed), we now seek
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a vector g1(θ) (“auxiliary vector” as we call it) that maximizes the magnitude
of the statistical cross-correlation between the v0(θ) processed received data,
vH

0 (θ)r, and the g1(θ) processed data, gH
1 (θ)r, subject to the orthonormality

constraint gH
1 (θ)v0(θ) = 0 and gH

1 (θ)g1(θ) = 1:

g1(θ) , argmax
g1(θ)

g
H
1

(θ)v0(θ)=0,‖g1(θ)‖=1

{∣∣E
{
vH

0 (θ)rrHg1(θ)
}∣∣}

= argmax
g1(θ)

g
H
1 (θ)v0(θ)=0,‖g1(θ)‖=1

{
|vH

0 (θ)Rg1(θ)|
}
. (177)

This constraint optimization problem was first posed and solved in [5] yield-
ing

g1(θ) =
(I − v0(θ)v

H
0 (θ))Rv0(θ)

‖(I − v0(θ)vH
0 (θ))Rv0(θ)‖

. (178)

The vector g1(θ) has unit norm, is orthogonal to v0(θ), and is a linear combi-
nation of the K source array response vectors when θ = θj , j = 1, . . . ,K, or
K + 1 array response vectors including sθ, when θ 6= θj .

To fill in the proposed basis, we define the intermediate vector

w1(θ)
4
= v0(θ) − µ1(θ)g1(θ) (179)

where the scalar µ1(θ) is the value that minimizes the output variance of the

w1(θ) processed data, E
{∣∣wH

1 (θ)r
∣∣2
}

[6], and equals

µ1(θ) =
gH

1 (θ)Rv0(θ)

gH
1 (θ)Rg1(θ)

. (180)

Then, recursively, for n = 2, . . . ,K − 1 we optimize the basis as follows:13

gn(θ) =

(
I − v0(θ)v

H
0 (θ) −

∑n−1
i=1 gi(θ)g

H
i (θ)

)
Rwn−1(θ)∥∥(I − v0(θ)vH

0 (θ) −
∑n−1

i=1 gi(θ)gH
i (θ))Rwn−1(θ)

∥∥ , (181)

µn(θ) =
gH

n (θ)Rwn−1(θ)

gH
n (θ)Rgn(θ)

, (182)

wn(θ) = wn−1(θ) − µn(θ)gn(θ). (183)

The final auxiliary vector gK(θ) that completes the construction of the basis is
not normalized:

gK(θ) =

(
I − v0(θ)v

H
0 (θ) −

K−1∑

i=1

gi(θ)g
H
i (θ)

)
RwK−1(θ). (184)

13At each step, gn(θ) maximizes the cross-correlation magnitude between the wn−1(θ)
processed data, wH

n−1(θ)r, and the gn(θ) processed data, gH
n (θ)r. Then, µn(θ) minimizes the

variance E
{∣∣wH

n (θ)r
∣∣2
}
.
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When θ = θj , j = 1, . . . ,K, gK(θ) = 0 and

span{v0(θj),g1(θj), . . . ,gK−1(θj)} = span{sθ1 , . . . , sθK
}. (185)

In this case, the vectors {v0(θj),g1(θj), . . . ,gK−1(θj)} form an orthonormal
basis for the true signal subspace. When θ 6= θj , j = 1, . . . ,K, however,

span{v0(θ),g1(θ), . . . ,gK(θ)} = span{sθ, sθ1 , . . . , sθK
} (186)

and including gk(θ) we have formed an orthogonal basis for the extended signal
subspace.

Calculation of the auxiliary vectors g1(θ),g2(θ), . . . ,gK(θ) as presented above
in (178)-(184) requires calculation of the intermediate vectors wn(θ) and scalars
µn(θ), n = 1, 2, . . . ,K − 1. Proposition 1 below shows that direct second-order
recursive calculation of g2(θ), . . . ,gK−1(θ) is possible (see also [7]-[9]), while
calculation of the final unnormalized auxiliary vector gK(θ) needs in addition a
(first-order) recursion on µn(θ). 14

Proposition 1: The auxiliary vectors g2(θ),g3(θ), . . . ,gK−1(θ) can be calculated
as follows:

gn(θ) =

(
I −

∑n−1
i=n−2 gi(θ)g

H
i (θ)

)
Rgn−1(θ)∥∥(I −

∑n−1
i=n−2 gi(θ)gH

i (θ)
)
Rgn−1(θ)

∥∥ , n = 2, 3, . . . , K − 1, (187)

where g1(θ) is given by (178) and g0(θ) = v0(θ).
The final (unnormalized) auxiliary vector gK(θ) equals

gK(θ) = −µK−1(θ)

(
I −

K−1∑

i=K−2

gi(θ)g
H
i (θ)

)
RgK−1(θ) (188)

where

µn(θ) = −µn−1(θ)
gH

n (θ)Rgn−1(θ)

gH
n (θ)Rgn(θ)

, n = 2, 3, . . . , K − 1, (189)

and µ1(θ) is given by (180).

C. DOA estimation

Having defined the auxiliary-vector basis {v0(θ),g1(θ), . . . ,gK(θ)}, we are
now ready to describe the proposed DOA estimation procedure. Let ∆ be the
prearranged angle search step in degrees and, without loss of generality, say that
180o/∆o is an integer. Define θ(n) = n∆o, n = 1, 2, . . . , 180o/∆o, and

S(θ(n)) =
[
v0(θ

(n)),g1(θ
(n)), . . . ,gK(θ(n))

]
. (190)

14Alternatively, the proposed basis {v0(θ),g1(θ), . . . ,gK(θ)} can be calcu-
lated by: (i) Gram-Schmidt orthonormalization of the Krylov-type basis [10]-[12]
{Rsθ ,R2sθ , . . . ,RK+1sθ} that is modified to begin with the first-order vector Rsθ or
(ii) through the first K +1 stages of the multistage Wiener filter representation [8], [13] when
the initialization of the first stage is changed to Rsθ . In either case, the last vector in the
basis is to be left unnormalized.
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The proposed spectrum for DOA estimation15 is

PAV (θ(n))
4
=

1

‖gH
K(θ(n))S(θ(n−1))‖

2 , n = 2, 3, . . . , 180o/∆o. (191)

To analyze the behavior of PAV (θ(n)) and its suitability for DOA estima-
tion, we consider first the case where the input autocovariance matrix R, as
it participates in gK(θ(n)) and S(θ(n−1)), is perfectly known. When θ(n) =
θj , j = 1, . . . ,K, gK(θ(n)) = 0. As θ(n) → θj , j = 1, . . . ,K, PAV (θ(n)) → ∞
and a peak in the spectrum is to be observed. When, on the other hand,
θ(n) 6= θj , j = 1, . . . ,K, gK(θ(n)) is a linear combination of the K source
signal array response vectors and sθ(n) . The columns of S(θ(n−1)) span the
source signal subspace extended by the sθ(n−1) dimension. Hence, a part of
gK(θ(n)) lies in the subspace of S(θ(n−1)) and gH

K(θ(n))S(θ(n−1)) 6= 0. Having
θ(n−1) = θj , j = 1, . . . ,K, does not affect these findings.

In practical scenarios where R is not known and is instead estimated from
finitely many collected data (by (173) for example), the above arguments become
approximate in an estimation theoretic sense. When θ(n) = θj , j = 1, . . . ,K,
ĝK(θ(n)) 6= 0 with probability one. We expect, however, that

∥∥ĝK(θ(n))
∥∥ be-

comes increasingly small as the data record size increases. At the same time,
ĝK(θ(n))⊥{v̂0(θ

(n)), . . . , ĝK−1(θ
(n))} by design and ĝK(θ(n)) lies outside the

approximate signal subspace. Hence,
∥∥∥ĝH

K(θ(n))Ŝ(θ(n−1))
∥∥∥ ' 0 and we expect

to see peaks in PAV (θ(n)) as θ(n) → θj , j = 1, . . . ,K.
The computational complexity of the algorithm outlined above is O(M 2K)

per test angle or O( 180
∆ M2K) in total (notice that no direct matrix inversion

operation is required). As a reference comparison, MUSIC and ESPRIT cost
one full eigenvector decomposition of O(M 3).

D. Simulation studies

For illustration purposes we consider a uniform linear antenna array of ten
elements (M = 10) and two narrowband uncorrelated binary phase-shift-keying
(BPSK) signals (K = 2) received in additive white Gaussian noise. The inter-
element spacing of the array is set exactly equal to half the center wavelength
of the signals (d = πc

ω ).
First, we fix the signal angles of arrival at −1o and 1o and the SNR’s at 7dB.

In Fig. 27, we examine the proposed AV basis spectrum when the observation
data record size is N = 60 as compared with MUSIC and the conventional
matched-filter (MF) spectrum. The AV spectrum resolves the two sources; MF
and MUSIC both fail.

In Fig. 28, we ease somewhat the problem to 3o of separation and add to the
comparisons ESPRIT and the widely successful and popular grid-ML estimator
of [14, 15] that intends to approximate the true ML solution [16, 17] by searching

15The proposed use, herein, of the modified orthogonal AV algorithm for DOA estimation
via (191) is in sharp contrast to the use in [13] of the standard multistage Wiener filter
representation algorithm of [8] for conventional reduced-rank ML-type DOA estimation.
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over a set of

(
N
K

)
selected grid points. Fig. 28(a) presents a probability of

resolution16 versus SNR study when N = 50. In Fig. 28(b), the SNR values
are fixed at 0dB and the probability of resolution is plotted against sample
support. The AV basis scheme significantly outperforms grid-ML at somewhat
lower computational cost.17 MF, as one might expect, fails to resolve at all SNR
values in Fig. 28(a). MUSIC fails as well when SNR=0dB for all data record
sizes in Fig. 28(b).

Next, we repeat the study of Fig. 28 for a scenario that involves random
Gaussian correlated sources s1, s2 generated as follows:

s1 ∼ N (0, σ2
s) and s2 = ps1 +

√
1 − p2 s3 (192)

where s3 ∼ N (0, σ2
s) and p is the correlation coefficient. Alongside standard

MUSIC and ESPRIT, we consider MUSIC and ESPRIT upon spatial smooth-
ing [18]. Interestingly, Fig. 29 demonstrates that for correlation values as high as
p = 0.7, the AV-basis estimator continues to outperform grid-ML in probability
of resolution (as well as MUSIC and ESPRIT with or without spatial smooth-
ing). Fig. 29(a) plots the probability of resolution as a function of the signals’

SNR=
σ2

s

σ2 for fixed data record size N = 50. Fig. 29(b) plots the probability of
resolution as a function of N when SNR=5dB. At correlation value p = 0.9, the
AV and grid-ML probability of resolution curves are seen to intersect (Fig. 30).
At small sample support, AV estimation continues to significantly outperform
grid-ML (Fig. 30(b)).

E. Conclusion

We derived a new basis for the extended signal subspace that does not involve
eigenvectors and includes the search vector dimension. Borrowing terminology
from related recent literature, we called the elements of the basis auxiliary vec-
tors (AV’s). In this report, we used the new AV basis for direction-of-arrival
estimation with remarkable success relative to (grid-)ML-type estimation for
uncorrelated or even highly correlated sources (the latter being especially true
under small sample support operation). Intuitively, one may attribute the suc-
cess to the specific basis in use together with the joint effect of rank collapsing
on the norm of the last AV and its projection onto the previously calculated
scanner-extended signal subspace.

16Two sources with DOA θ1 and θ2 are said to be resolved if the respective estimates θ̂1

and θ̂2 are such that both |θ̂1 − θ1| and |θ̂2 − θ2| are less than |θ1 − θ2|/2 [14].
17The AV estimator is run with ∆ = 0.5o for a computational cost of the order of

O(360M2K). Grid-ML has complexity O

((
N
K

)
M2K

)
. Here (Fig. 28), N = 50, K = 2,

and

(
N
K

)
= 1225.
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Fig. 27: AV, MUSIC, and MF spectra (θ1 = −1o, θ2 = 1o, SNR1=SNR2=7dB,
N = 50).
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Fig. 28: (a) Probability of resolution versus SNR (separation 3o, N =
50). (b) Probability of resolution versus sample support (separation 3o,
SNR1=SNR2=0dB).
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Fig. 29: (a) Probability of resolution versus SNR (separation 3o, N = 50, cor-
relation 70%). (b) Probability of resolution versus sample support (separation
3o, SNR1=SNR2=5dB, correlation 70%).
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Fig. 30: (a) Probability of resolution versus SNR (separation 3o, N = 50, cor-
relation 90%). (b) Probability of resolution versus sample support (separation
3o, SNR1=SNR2=5dB, correlation 90%).
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X. An 8×8 Quasi-Orthogonal STBC Form for

Transmissions over Eight or Four Antennas

This work has been presented at IEEE ICASSP 2007, Honolulu, Hawaii.
Orthogonal space-time block codes (O-STBC) [1] achieve full transmit di-

versity and allow single-symbol (two real symbols) maximum likelihood (ML)
decoding. The drawback of O-STBCs is that full-rate codewords do not exist
for more than two transmit antennas. For the case of four transmit antennas,
the rate limitation of O-STBCs was overcome by quasi-orthogonal (QO) STBCs
at the expense of diversity loss [2]-[4]. Full-rate full-diversity quasi-orthogonal
codewords for 4-transmit-antennas were then presented in [5], [6] by retaining
the code structure of [2], [3] and modifying the constellation of some of the sym-
bols. ML decoding of the QO-STBCs in [5], [6] requires joint detection of two
symbols (four real symbols). Interleaving real and imaginary parts of different
symbols enables single-symbol decoding of full-rank, full-diversity QO-STBCs
for the 4-transmit-antenna case [7], [8], at the expense of some performance loss
in comparison with joint two-symbol dectection [5].

The codewords in [1]-[8] partition the symbols into orthogonal sets and ML
detection requires only joint decoding of the symbols in each orthogonal set in-
dividually. Since the complexity of the ML decoder increases exponentially with
the number of symbols in each orthogonal set, a trade-off between rate/diversity
and decoding requirements is taking shape, especially for large number of trans-
mit antennas. In [9], QO-STBCs for 8 transmit antennas that attain full di-
versity and full rate were presented that require, however, joint detection of
four symbols (eight real symbols). Reduction in complexity was achieved for
the 8-antenna case through the process of interleaving the real and imaginary
parts of different symbols [10], [11]; the codewords can be partitioned into four
orthogonal sets and hence require joint two-symbol decoding only.

In this paper we present a new two-symbol-decodable, full rate, full diver-
sity order, 8 × 8 QO-STBC form that can be applied across either 4-transmit
or 8-transmit-antenna systems. The proposed QO-STBC employs constella-
tion rotation (CR) and symbol-interleaving similar to [10], [11], however, the
8 × 8 codeword can be divided into two 4 × 4 codewords without the omis-
sion of any symbols. We initially concentrate our efforts on the codeword for
the 8-transmit-antenna system and evaluate conditions on the rotation angles
necessary for the codeword to achieve full diversity order. Since several rota-
tion angle pairs may exist that maximize the diversity order, we investigate
different criteria for rotation angle selection to further improve error-rate per-
formance. Common choice for rotation angle optimization of QO-STBCs is the
maximization of the diversity product which in turn leads to minimization of the
pairwise-error-probability (PEP)-upper-bound at (asymptotically) high signal-
to-noise ratios (SNR) [12]. However, for space-time codes with large diversity
order and/or large number of transmit antennas, diversity product maximiza-
tion may not provide satisfactory PEP-bound minimization and error-rate per-
formance over operable SNRs [13]. Contrary to the popular choice of diversity
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product maximization, we pursue other means of optimizing the rotation angles
to improve system performance. Within the class of two-symbol decodable, full
rate 8 × 8 QO-STBCs we examine four different rotation angle optimization
criteria: (i) We find a new expression for the rotation angles that maximize the
diversity product of the suggested codeword. (ii) We show that sum-eigenvalue
maximization as proposed in [13] is irrelevant/non-applicable to the 8-transmit-
antenna QO-STBCs. (iii) We suggest, instead, and solve minimum-eigenvalue
maximization. (iv) Finally, we use directly the PEP-upper-bound to obtain new
true PEP-upper-bound optimal rotation angles.

The rest of the paper deals with codeword design and rotation angle opti-
mization for the 4-transmit-antenna system. For the 4-transmit-antenna sys-
tem we allow the channel coefficients of the first 4 × 4 codeword block to be
correlated with the channel coefficients of the next 4 × 4 codeword block. We
show that as long as the correlation is less than 100%, a diversity order of 8
is achieved using only 4 antennas. Using the PEP-upper-bound results for fast
fading time-correlated channels in [14], we re-evaluate the PEP-upper-bound to
incorporate the channel correlation. We then optimize the rotation angles using
the four criteria discussed above for the 8-transmit-antenna case. We find that
the rotation angles that maximize the diversity product for the uncorrelated
8-transmit-antenna system also maximize the diversity product for the corre-
lated 4-transmit-antenna system. Arguably, this may be somewhat surprising
because it did not seem possible in the past to make diversity product rotation
angle optimization independent of the correlation coefficient [14]. For the other
three criteria, we show that sum-eigenvalue maximization as proposed in [13]
is again irrelevant/non-applicable to the 4-transmit-antenna case, while the re-
maining two criteria (minimum-eigenvalue minimization and PEP-upper-bound
minimization) yield complicated rather intractable optimization equations as
they become dependent on the correlation coefficient.

A. Code Structure and Transceiver Model

Let Nt be the number of transmit antennas, Nr the number of receive anten-
nas, and T the number of time slots over which the code is transmitted. We
denote the number of transmitted symbols by K. The eight symbols ak, k =
1, . . . ,K(= 8), to be transmitted are formed by mapping the incoming bits onto
known constellations, e.g. quadrature-amplitude-modulated (QAM), while their
corresponding constellation rotated version āk, k = 1, . . . ,K(= 8), is created by

ām = (amR + iamI)e
iφ, m = 1, 2, 5, 6,

ān = (anR + ianI)e
iθ, n = 3, 4, 7, 8,

(193)

where akR and akI denote the real and imaginary part of the symbol ak, respec-
tively, and φ, θ, are the rotation angles to be optimized. The symbols āk are
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interleaved to form xk , k = 1, . . . ,K(= 8),

x1 = ā1R + iā5I , x2 = ā2R + iā6I ,
x3 = ā3R + iā7I , x4 = ā4R + iā8I ,
x5 = ā5R + iā1I , x6 = ā6R + iā2I ,
x7 = ā7R + iā3I , x8 = ā8R + iā4I .

(194)

We now form/define X1 and X2 as shown below

X1 =




x1 x2 x3 x4

−x∗2 x∗1 −x∗4 x∗3
x3 x4 x1 x2

−x∗4 x∗3 −x∗2 x∗1


 , X2 =




x5 x6 x7 x8

−x∗6 x∗5 −x∗8 x∗7
x7 x8 x5 x6

−x∗8 x∗7 −x∗6 x∗5


 . (195)

Consider now availability of either Nt = 8 or Nt = 4 transmit antennas. Below,
we describe our transceiver model for each case.

Case 1: Eight transmit antennas

The transmitted codeword X is of the form

X =

[
X1 04×4

04×4 X2

]
(196)

and the Nt(= 8) ×Nr received signal matrix Y is given by

Y = ρ

√
A

Nt
XH + N (197)

where A is the received signal energy at each receive antenna, H is the 8 ×Nr

channel matrix and N is the 8×Nr noise matrix. The elements of H and N are
modeled as independent and identically distributed complex Gaussian random
variables of zero mean and unit variance without loss of generality; ρ =

√
2 sat-

isfies the energy constraint E{‖X‖2
F} = TNt (E{·} is the expectation operator

and ‖ · ‖2
F denotes Frobenius norm of a matrix). From an implementation point

of view, reduction of the large peak-to-average-power ratio (PAPR) created by
the zeros during transmission of (196) is achieved by multiplying X by an 8× 8
normalized Hadamard matrix before transmission. This effect is reversed at
the receiver by multiplying the received signal matrix by the transpose of the
Hadamard matrix. The net transceiver model still takes up the form in (196)
and (197) by virtue of the orthogonality of the Hadamard matrix.

Case 2: Four transmit antennas

Assume now that we have available only Nt = 4 antennas. We transmit X1 in
the first four time slots and X2 in the next four time slots. The 4×Nr received
signal matrices Y1 and Y2 are given by

Y1 = ρ

√
A

Nt
X1H1 + N1, Y2 = ρ

√
A

Nt
X2H2 + N2. (198)
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Similar to the 8-transmit-antenna case, the elements of the 4 × Nr matrices,
H1, H2, N1 and N2 are modeled as identically distributed complex Gaussian
random variables (with zero mean and unit variance). ρ = 1 satisfies the energy
constraint E{‖X1‖2

F } = E{‖X2‖2
F } = TNt. Individually within a matrix,

the entries are taken to be independent from each other; N1 as a whole is
independent of N2, H1 and H2 are independent from N1 and N2, but H1 and
H2 are characterized as potentially correlated with each other via a correlation
coefficient p. To express the correlation between the elements of the two channel

matrices we define the extended channel matrix He
4
=
[
HT

1 HT
2

]T
and obtain

E{hejh
H
el} =





[
I4 pI4

pI4 I4

]
, j = l,

08, otherwise,
j, l = 1, . . . , Nr, (199)

where hej , j = 1, . . . , Nr, are the columns of He and p is the correlation coef-
ficient. In similar fashion to He, the extended noise matrix may be defined as

Ne
4
=
[
NT

1 NT
2

]T
with

E{nejn
H
el} =






[
I4 04

04 I4

]
, j = l,

08, otherwise,
j, l = 1, . . . , Nr, (200)

where nej , j = 1, . . . , Nr, are the columns of Ne. Combining Y1 and Y2 in
(198) into a single equation we have

Ye = ρ

√
A

Nt
XHe + Ne (201)

where Ye = [YT
1 YT

2 ]T and X is defined in (196). It is important to note that
(198) represents a system with time-correlated channel coefficients while (201)
represents a system in which the channel coefficients are correlated across space
(channel coefficients of the four actual antennas correlated with the channel
coefficients of the four virtual antennas). This distinction is important when
obtaining the PEP-upper-bound for the 4-transmit-antenna system later in the
presentation.

We now proceed with the description of the ML detector for both cases.
Let A represent the symbol constellation and Z denote the set of |A|K symbol
vector points (| · | denoting cardinality of a set) in the complex K-dimensional
space. If f(·) represents the one-to-one mapping of the symbol vector a ∈ AK

into X, for the 8-antenna case the ML estimate of the symbol vector assuming
perfect channel state information at the receiver is

aML = argmin
â ∈ AK , X̂=f(â)

‖Y − ρ
√

A
Nt

X̂H‖2
F

= argmin
â ∈ AK , X̂=f(â)

∑Nr

j=1

{
Aρ2

Nt
hH

j X̂HX̂hj − 2ρ
√

A
Nt
Re
{
yH

j X̂hj

}}

(202)
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(H is the conjugate transpose operator and Re{·} denotes real part) where
yj , hj , j = 1, . . . , Nr, are the columns of Y and H respectively. Expanding

X̂HX̂ we have

X̂HX̂ =




aI2 bI2

bI2 aI2
0

0
cI2 dI2

dI2 cI2


 (203)

where

a
4
=

∑K
k=1 |x̂k|2,

b
4
=

∑K/2
k=1 2Re{x̂∗kx̂k+K/2},

c
4
=

∑2K
k=K+1 |x̂k |2,

d
4
=

∑K+K/2
k=K+1 2Re{x̂∗kx̂k+K/2}, K = 4.

(204)

Substituting (193) and (194) in (204) we obtain

a = ˆ̄a
2
1R + ˆ̄a

2
2R + ˆ̄a

2
3R + ˆ̄a

2
4R + ˆ̄a

2
5I + ˆ̄a

2
6I + ˆ̄a

2
7I + ˆ̄a

2
8I ,

b = 2ˆ̄a1Rˆ̄a3R + 2ˆ̄a2Rˆ̄a4R + 2ˆ̄a5I ˆ̄a7I + 2ˆ̄a6I ˆ̄a8I ,

c = ˆ̄a
2
5R + ˆ̄a

2
6R + ˆ̄a

2
7R + ˆ̄a

2
8R + ˆ̄a

2
1I + ˆ̄a

2
2I + ˆ̄a

2
3I + ˆ̄a

2
4I ,

d = 2ˆ̄a5Rˆ̄a7R + 2ˆ̄a6Rˆ̄a8R + 2ˆ̄a1I ˆ̄a3I + 2ˆ̄a2I ˆ̄a4I .

(205)

From (205) we observe that inter-symbol-interference occurs among the follow-
ing symbol pairs (ˆ̄a1, ˆ̄a3), (ˆ̄a2, ˆ̄a4), (ˆ̄a5, ˆ̄a7), and (ˆ̄a6, ˆ̄a8). In (202), since

multiplying X̂HX̂ by hH
j and hj does not create any additional cross-terms be-

tween the symbols ˆ̄ak, ML-decoding of the symbol vector a can be reduced to
jointly decoding the symbol pairs

{
(ˆ̄a1, ˆ̄a3), (ˆ̄a2, ˆ̄a4), (ˆ̄a5, ˆ̄a7), (ˆ̄a6, ˆ̄a8)

}
indepen-

dently. Since ˆ̄ak is obtained by rotating the constellation of âk, k = 1, . . . , 8,
decoding the symbols pairs {(â1, â3), (â2, â4), (â5, â7), (â6, â8)} independently is
ML-optimum. For the 4-transmit-antenna case we replace H by He and Y by
Ye in (202) to obtain a similar result.

As a concluding remark, we can show that our suggested code structure in
(196) for the 8-transmit-antenna case is equivalent to the one in [10]. However,
we do favor the code in (196) for two reasons: (i) Its simplicity in code con-
struction enables our theoretical analysis on rotation angle optimization and,
(ii) unlike the codewords in [10], [11], the codeword in (196) may be applied to
a 4-transmit-antenna system across eight time-slots without omitting any sym-
bols. Having shown already that the code supports ML-optimal two-symbol
decoding, we now evaluate its diversity order and seek the rotation angles that
improve error-rate performance.

B. Diversity Order Calculation: Eight Transmit Antennas

The probability of receiving the codeword X̃ when X 6= X̃ is transmitted is
upper bounded by [12]

Pr(X → X̃) ≤ 1

2

(
R∏

i=1

{
1

1 + ρ2Aλi

4Nt

})Nr

(206)
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where R is the rank of (X − X̃) and λi, i = 1, . . . , R, are the eigenvalues of

(X− X̃)H(X − X̃). The minimum value of R obtained over all codeword pairs
is called the diversity order of the system [12] and dictates the slope of the error-
rate curves at asymptotically high SNR values. To obtain the diversity order of
the codeword in (196) we require the eigenvalues λi of (X − X̃)H(X − X̃). Set

∆X
4
= X− X̃ and ∆xk

4
= xk − x̃k, k = 1, . . . , 8; then,

∆XH∆X =




∆aI2 ∆bI2

∆bI2 ∆aI2
0

0
∆cI2 ∆dI2

∆dI2 ∆cI2


 (207)

where

∆a
4
=

∑K
k=1 |∆xk|2,

∆b
4
=

∑K/2
k=1 2Re{∆x∗k∆xk+K/2},

∆c
4
=

∑2K
k=K+1 |∆xk |2,

∆d
4
=

∑K+K/2
k=K+1 2Re{∆x∗k∆xk+K/2}, K = 4.

(208)

The block diagonal nature of ∆XH∆X in (207) allows us to calculate its eigen-
values as {(∆a− ∆b) , (∆a + ∆b), (∆c − ∆d), (∆c+ ∆d)} which exist with
multiplicity of two. Expanding and simplifying, the eigenvalues are as shown
below:

{ (∆ā1R − ∆ā3R)2 + (∆ā2R − ∆ā4R)2 + (∆ā5I − ∆ā7I)
2 + (∆ā6I − ∆ā8I)

2,
(∆ā1R + ∆ā3R)2 + (∆ā2R + ∆ā4R)2 + (∆ā5I + ∆ā7I )

2 + (∆ā6I + ∆ā8I)
2,

(∆ā5R − ∆ā7R)2 + (∆ā6R − ∆ā8R)2 + (∆ā1I − ∆ā3I )
2 + (∆ā2I − ∆ā4I)

2,
(∆ā5R + ∆ā7R)2 + (∆ā6R + ∆ā8R)2 + (∆ā1I + ∆ā3I )

2 + (∆ā2I + ∆ā4I)
2 } .
(209)

As each eigenvalue is a summation of squares, the set of minimum eigenvalues
over all possible codewords pairs is
{
(∆ā1R − ∆ā3R)2, (∆ā1R + ∆ā3R)2, (∆ā1I − ∆ā3I)

2, (∆ā1I + ∆ā3I)
2
}

(210)

and represents the worst case scenario for the upper bound in (206). As long
as all eigenvalues in (210) are non-zero, the codeword X achieves the maximum
diversity order of 8. We now attempt to identify conditions on the rotation
angles that have to be satisfied to allow the codeword X to achieve full diversity
order.

It is easily observed that all the eigenvalues in (210) are non-zero if and only
if the product of the eigenvalues in (210) is non-zero, which in turn is the square
root of the minimum value of the determinant of the ∆XH∆X. We have,

min det(∆XH∆X)

=
[
(∆ā1R − ∆ā3R)2(∆ā1R + ∆ā3R)2(∆ā1I − ∆ā3I)

2(∆ā1I + ∆ā3I)
2
]2

=
[
(∆ā2

1R − ∆ā2
3R)(∆ā2

1I − ∆ā2
3I)
]4

=

[ [
(∆a1Rcos(φ) − ∆a1Isin(φ))2 − (∆a3Rcos(θ) − ∆a3Isin(θ))2

]

×
[
(∆a1Rsin(φ) + ∆a1Icos(φ))2 − (∆a3Rsin(θ) + ∆a3Icos(θ))

2
]
]4
.

(211)
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For fixed φ, θ, we categorize (211) into five cases depending on the values of
∆a1R, ∆a3R, ∆a1I , ∆a3I . Note that we cannot have ∆a1R = ∆a3R = ∆a1I =
∆a3I = 0.

Case 1: Only one non-zero value

min det(∆XH∆X) = [(∆a1Rcos(φ))2(∆a1Rsin(φ))2]4. (212)

If any of cos(φ), sin(φ), cos(θ), sin(θ) is zero, full diversity order is not achieved.

Case 2: Two non-zero values both from same symbol

min det(∆XH∆X) = [
(
(∆a1Rcos(φ) − ∆a1Isin(φ))2

)
(
(∆a1Rsin(φ) + ∆a1Icos(φ))2

)
]4.

(213)

Let A denote the constellation of the symbols ak, k = 1, . . . ,K,, Aφ and Aθ

denote the constellations of symbols formed by rotating A by φ and θ, respec-
tively. If any two symbols chosen from Aφ or Aθ have the same real part or the
same imaginary part, full diversity order cannot be achieved.

Case 3: Two non-zero values both either real or imaginary

min det(∆XH∆X) =
([

(∆a1Rcos(φ))2 − (∆a3Rcos(θ))
2
]

[
(∆a1Rsin(φ))2 − (∆a3Rsin(θ))2

])4
.

(214)

If θ = φ, full diversity order cannot be achieved.

Case 4: Two non-zero values, one from real part of one symbol and
other from imaginary part of other symbol

min det(∆XH∆X) =
([

(∆a1Rcos(φ))2 − (∆a3Isin(θ))2
]

[
(∆a1Rsin(φ))2 − (∆a3Icos(θ))

2
])4

.
(215)

If θ = φ± π/2, full diversity order cannot be achieved.

Case 5: All values are non-zero

If the square distance between the real parts of any two symbols from Aφ is
equal to the square distance between the real parts of any two symbols from Aθ

or the square distance between the imaginary parts of any two symbols from Aφ

is equal to the square distance between the imaginary parts of any two symbols
from Aθ, full diversity order is not achieved.

For a given constellation, several pairs of φ, θ may exist that satisfy the ex-
clusion conditions listed above. In the next section, we investigate four different
criteria for rotation angle optimization.
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C. Rotation Angle Optimization: Eight Transmit Anten-
nas

We now consider four different criteria to optimize the rotation angles and for
each criterion, we show how φ, θ can be obtained for the codeword in (196) using
(210). For ease in reference, our findings (values of φ, θ for each criterion) are
summarized in Table IV.

Case 1: Diversity product maximization

At high SNR values assuming full transmit diversity order and Nr = 1, (206)
can be approximated by

Pr(X → X̃) ≤ 1

2

(
Nt∏

i=1

λi

)−1(
− A

4Nt

)−Nt

. (216)

Worst-case minimization of the bound in (216) is equivalent to maximization
of the minimum product of the eigenvalues (determinant of ∆XH∆X) over all
possible codeword pairs, which in turn is commonly represented by the diversity
product ζ,

ζ =
1

2
√
Nt

min
X6=X̃

∣∣det
[
∆X∆XH

]∣∣1/(2T )
. (217)

Diversity product maximization was used as the rotation angle design criterion
in [10], [11]. For the codeword in (196), the minimum determinant of ∆XH∆X
over all codeword pairs is

min det(∆XH∆X) =[
(∆a1Rcos(φ) − ∆a1Isin(φ))2 − (∆a3Rcos(θ) − ∆a3Isin(θ))2

]4

×
[
(∆a1Rsin(φ) + ∆a1Icos(φ))2 − (∆a3Rsin(θ) + ∆a3Icos(θ))

2
]4

(218)
and φ, θ should be chosen to maximize (218). We evaluate and conclude (see
Table IV) that the codeword in (196) (and the proposed codewords in [10], [11])
achieve diversity product of 0.1747 with 4-QAM constellation and 0.1071 with
the non-rectangular 8-QAM constellation for the 8-transmit-antenna case.

Case 2: Minimum sum-of-eigenvalues maximization

In [13], it was proposed that for high diversity order systems (number of transmit
antennas greater than four) the minimum trace of ∆XH∆X is to be maximized
over all codeword pairs. From our expression (209), we observe that

min (Tr(∆XH∆X)) = 2
[
(∆ā1R − ∆ā3R)2 + (∆ā1R + ∆ā3R)2

+(∆ā1I − ∆ā3I )
2 + (∆ā1I + ∆ā3I)

2
]

= 4[∆ā2
1R + ∆ā2

3R + ∆ā2
1I + ∆ā2

3I ]
= 4[∆a2

1R + ∆a2
3R + ∆a2

1I + ∆a2
3I ]

(219)

which is independent of φ, θ.
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Hence, for the proposed codeword and that of [10], [11], the sum-of-eigenvalues
criterion in [13] is not relevant.

Case 3: Minimum eigenvalue maximization

If r < Nt eigenvalues of ∆XH∆X are significantly less than 1, then even for
large SNR values, 1 + Aλi

4Nt
' 1 and (206) is approximated by

Pr(X → X̃) ≤ 1

2

(
Nt−r∏

i=1

λi

)−1(
− A

4Nt

)−(Nt−r)

. (220)

The system seems to lose diversity; for the codeword in (196) and the proposed
codewords in [10], [11] the occurrence of the eigenvalues in pairs causes loss
of diversity in steps of two. In such circumstances, it appears reasonable to
consider rotation angle choices that maximize the minimum possible eigenvalue
over all pairs of codewords. For our code structure in (196), the rotation angles
that maximize the minimum eigenvalue are

(φ, θ) = argmax
φ,θ

min
{
(∆ā1R − ∆ā3R)2, (∆ā1R + ∆ā3R)2,

(∆ā1I − ∆ā3I)
2, (∆ā1I + ∆ā3I)

2
}
.

(221)

The solution is listed in Table IV.

Case 4: PEP-bound Minimization

We now show that for all STBCs that employ CR and have no more than two
unique eigenvalues of ∆XH∆X over all possible codeword pairs, maximization of
the diversity product is equivalent to minimization of the upper bound on PEP
for all SNRs. Minimization of the bound in (206) is equivalent to maximizing
∏R

i=1

{
1 + Aλi

4Nt

}
. If λ1 and λ2 represent the 2 unique eigenvalues of ∆XH∆X,

then

argmax
∏R

i=1

(
1 + Aλi

4Nt

)
= argmax

[(
1 + Aλ1

4Nt

)(
1 + Aλ2

4Nt

)]q

= argmax
[
1 + A

4Nt
(λ1 + λ2) + A2

16N2
t

(λ1λ2)
]q

(222)
where q denotes the multiplicity of the eigenvalues. Since

q(λ1 + λ2) = tr(∆XH∆X) = ‖∆X‖2
F

is independent of rotation angles18 we need to maximize only the product of the
eigenvalues to minimize the bound in (206). In the case of a single unique eigen-
value (as in O-STBCs for example), the STBC is independent of the rotation
angle.

18Constellation rotation or interleaving does not change the transmitted energy of the STBC
codeword.
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While the case of two unique eigenvalues applies to the 4 × 4 QO-STBCs
proposed in [5], [7], [8] and their choice of rotation angle is PEP-bound optimal,
for the 8×8 codewords four unique eigenvalues exist and maximizing the eigen-
value (diversity) product over all possible codeword pairs does not necessarily
minimize the maximum bound in (206).

We now directly find the rotation angles that minimize the maximum (worst
case) PEP-upper-bound. Substitution of (210) in (206) gives us the worst case
scenario for all codeword pairs. We need to optimize φ, θ such that

(φ, θ) = argmax
φ,θ

∏4
i=1

[(
1 + Aλi

4Nt

)]2
,

λi =
{
(∆ā1R − ∆ā3R)2, (∆ā1R + ∆ā3R)2, (∆ā1I − ∆ā3I )

2, (∆ā1I + ∆ā3I)
2
}
,

i = 1, 2, 3, 4.
(223)

Suitable values for A can be chosen such that Aλi > 1 for all i = 1, 2, 3, 4. The
solution is listed in Table IV.

In the next section, we aim to extend the results that we have obtained for the
8-transmit-antenna case to the correlated 4-transmit-antenna system.

D. Diversity Order Calculation and Rotation Angle Op-
timization: Four Transmit Antennas

Due to the correlation that exists between elements of H1 and H2, the PEP-
upper-bound in (206) requires reevaluation. The new PEP-upper-bound can be
obtained either by considering the time-correlated channel model in (198) or
the space-correlated channel model in (201). We begin with the time-correlated
model in (198).

Defining Xt
4
= [XT

1 XT
2 ]T and ∆Xt

4
= Xt − X̃t where Xt 6= X̃t, the PEP for

a time-correlated fast fading channel (channel coefficients changing every time
slot) is upper-bounded by [14]

Pr(Xt → X̃t) ≤
(

2rtNr − 1
rtNr

)( rt∏

i=1

Λti

)−Nr (
A

Nt

)−rtNr

(224)

where rt is the rank of the matrix (∆Xt∆XH
t ) ◦Rt (◦ is the Hadamard product

operator), Λti, i = 1, . . . , rt, are the non-zero eigenvalues of (∆Xt∆XH
t ) ◦ Rt,

and Rt is the time-correlated channel matrix to be evaluated. Conforming with
the signal model in [14], with T = 4 and Nr = 1 the received signal vector

ye1
4
= [yT

1 yT
2 ]T (y1 and y2 are the first columns of Y1, Y2 in (198)) is

ye1 =

√
A

Nt
[D1, . . . ,DNt

]ht + nt (225)

where Di = diag{xti} are the 2T × 2T matrices created by the columns of Xt,
xti, i = 1, 2, · · · , Nt. The 2T × 1 noise vector nt satisfies E{ntn

H
t } = I2T .
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The 2TNt × 1 channel vector is ht = [hT
t1, . . . , hT

tNt
]T where hti is the vec-

tor corresponding to the ith, i = 1, . . . , Nt, transmit antenna. If hei,j
, i =

1, . . . , 2Nt, j = 1, . . . , Nr, represent the elements of He = [HT
1 HT

2 ]T , then hti =[
hei,1 hei,1 hei,1 hei,1 hei+Nt,1 hei+Nt,1 hei+Nt,1 hei+Nt,1

]T
. The time-correlated

channel matrix Rt can now be defined as

Rt
4
= E{htih

H
ti } =

[
14 p14

p14 14

]
, i = 1, . . . , Nt, (226)

where 14 is a 4 × 4 all-one matrix. Having evaluated Rt, we calculate

(∆Xt∆XH
t ) ◦ Rt =

[
∆X1∆XH

1 p∆X1∆XH
2

p∆X2∆XH
1 ∆X2∆XH

2

]

=

[
∆X1 04

04 ∆X2

] [
I4 pI4

pI4 I4

] [
∆XH

1 04

04 ∆XH
2

]

= ∆XRs∆XH

(227)

with Rs
4
= E{hejh

H
el} =

[
14 p14

p14 14

]
for j = l from (199). Since

eig(Rs∆XH∆X) = eig(∆XRs∆XH ) [15], expanding Rs∆XH∆X we have

Rs∆XH∆X =




∆aI2 ∆bI2

∆bI2 ∆aI2

p∆cI2 p∆dI2

p∆dI2 p∆cI2

p∆aI2 p∆bI2

p∆bI2 p∆aI2

∆cI2 ∆dI2

∆dI2 ∆cI2


 . (228)

This concludes the analysis work for the PEP-upper-bound for the time-correlated
model in (224).

When we consider the space-correlated model in (201) we obtain the PEP-
upper-bound as

Pr(X → X̃) ≤ 1

2

(
rt∏

i=1

{
1

1 + AΛti

4Nt

})Nr

(229)

where rt and Λti have the same definition as before. For clarity and brevity in
presentation, the derivation of (229) is shifted to the Appendix. Even though the
obtained expressions in (224) and (229) differ, they both are primarily functions
of Λti which need to be evaluated for rotation angle optimization. Due to the loss
of the block diagonal structure (cf. (228)), individual eigenvalues of Rs∆XH∆X
do not yield simplified expressions as was the case for the 8-transmit-antenna
system. However, the product and sum of the eigenvalues can still be evaluated.

Case 1: Diversity product maximization

We have
Nt∏

i=1

Λti = det(Rs∆XH∆X) = det(Rs)det(∆XH∆X) (230)
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and the diversity product for the 4-transmit-antenna case is given by

ζ =
1

2
√
Nt

min
X6=X̃

∣∣det
[
∆X∆XH

]
det[Rs]

∣∣1/(2T )

=
(1 − p2)2/T

2
√
Nt

min
X6=X̃

∣∣det
[
∆X∆XH

]∣∣1/(2T )
. (231)

We conclude that the rotation angles φ, θ that maximize the diversity prod-
uct for the uncorrrelated 8-transmit-antenna case also maximize the diversity
product for the correlated 4-transmit-antenna case (for any correlation coeffi-
cient value) and provide maximum diversity order of 819. This might seem,
arguably, surprising in the context of the findings in [14] where for fast fading
time-correlated channels optimal diversity-product rotation angles are a func-
tion of the correlation coefficient p. We can also observe that when p = 1, the
diversity product in (231) becomes zero and the maximum achievable rank of
Rs∆XH∆X is 4 (∆a = ∆c and ∆b = ∆d) which seems intuitively satisfying
as X2 experiences the same fading as X1. Hence, fluctuation in the channel
conditions are actually beneficial to the proposed transmission scheme.

Case 2: Minimum sum-of-eigenvalues maximization

Substituting from (205),

Nt∑

i=1

Λti = Tr(Rs∆XH∆X) = 2(∆a+∆c) = 2

8∑

i=i

∆ā2
iR+∆ā2

iI = 2

8∑

i=i

∆a2
iR+∆a2

iI

(232)
which is independent of the rotation angles φ, θ. Hence, once again, maximiza-
tion of the minimum sum of eigenvalues (criterion suggested in [13]) is irrelevant
to this system. Obtaining φ, θ for the other two criteria (minimum eigenvalue
maximization and direct PEP-bound minimization) proposed in Section IV re-
quires knowledge of each individual eigenvalue of Rs∆XH∆X. Even though
the eigenvalues can be evaluated, they yield complicated expressions that are
functions of p.

As a concluding remark, most important aspect of the proposed transmission
scheme for the 4-transmit-antenna case is that it allows for transmit diversity
order of 8 with no additional physical hardware at the transmitter (4 antennas
only) and requires only joint two-symbol decoding at the receiver. In the bel-
lowing section, we evaluate the error-rate performance of the codeword X along
with the various criteria for rotation angle optimization proposed in Section IV.

E. Simulation Studies

We divide the presentation of our simulations studies into the 4 and 8-transmit-
antenna case. In all studies we set Nr = 1.

19However, due to the correlation between the corresponding elements of H1 and H2, the
codeword X experiences a loss in diversity product by a factor of (1 − p2)2/T .
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Case 1: Four Transmit Antennas

To evaluate the performance of the 8 × 8 QO-STBC transmitted by 4 anten-
nas only, we compare its error-rate performance against the 4 × 4 QO-STBC
codeword in [5]. Note that to our best knowledge, for a system with 4 transmit
antennas the code in [5] has the best error-rate performance of all QO-STBCs
that jointly decode two symbols or less. Since our proposed codeword has di-
versity order of 8 and rate 1 over 8 time slots, we may compare against two
different 4 × 4 QO-STBC transmission schemes. In one scenario, we transmit
the 4 × 4 QO-STBC codeword over the first four time slots and then repeat
the same codeword over the next four time slots to maintain diversity order of
8 with, however, code rate 1/2 (4 symbols over 8 time slots). In the second
scenario, we transmit a 4× 4 QO-STBC codeword over the first four time slots
and then transmit a new 4×4 QO-STBC codeword over the next four time slots
to maintain code rate of 1 (8 symbols over 8 time slots) with, however, diversity
order 4.

The elements of the channel matrices, h1i,j
in H1 and h2i,j

in H2, are cor-
related and generated as follows:

h1i,j
∼ CN (0, 1) and h2i,j

= ph1i,j
+
√

1 − p2 zi,j , i = 1, . . . , Nt, j = 1, (233)

where zi,j ∼ CN (0, 1) and p is the correlation coefficient (CN stands for com-
plex Gaussian random variable). In Fig. 1, we plot the block-error-rate as a
function of the received signal-to-noise-ratio (SNR) for (i) our 4-antenna code-
word transmission scheme in (195), (ii) transmission rate 1/2, diversity order 8
transmission of the 4×4 QO-STBC of [5], and (iii) transmission rate 1, diversity
order 4, 4×4 QO-STBC. We consider three channel fading correlation scenarios,
p = 0, p = 0.5, and p = 0.8. For rate 1 codewords, we select the symbols from a
4-QAM constellation, while for rate 1/2 codewords the symbols are chosen from
a 16-QAM constellation to maintain equal spectral efficiency for all transmis-
sion schemes. Under diversity product minimization, the rotation angles for our
proposed codeword are {φ, θ} = {37.9, 21.4}, while for the 4×4 QO-STBC code-
word, the rotation angle is π/4 as calculated in [5]. Since the 4×4 QO-STBC has
only two unique eigenvalues, the angle of π/4 is also PEP-bound optimal (not
the case, however, for the proposed 4-transmit-antenna transmission scheme).

From Fig. 31, we observe a substantial gain in performance achieved by
transmitting the proposed 8 × 8 codeword over four antennas when compared
with the two other 4× 4 QO-STBC schemes. The best achievable performance
from the 4 × 4 QO-STBC codeword of [5] is the direct rate 1, diversity order
4 transmission, which the proposed transmission scheme outperforms handily
even in the extreme scenario of 80% channel correlation. In fact, to that respect
it may be worth noting that our matrices X1 and X2 may not need to be
transmitted directly one after the other in time. Separating the transmissions
of the two codeword blocks over several time-slot blocks (block interleaving)
may help reduce the effective coefficient value of p when allowed.
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Case 2: Eight Transmit Antennas

We now evaluate the performance of 8× 8 QO-STBC in (196) under 8-element
antenna transmission and minimum eigenvalue CR optimization by (221), di-
versity product CR optimization by (218), and the proposed direct maximum
PEP-bound CR optimization by (223). In Fig. 32, we plot the block-error-rate
versus SNR when the symbols are chosen from a 4-QAM constellation. For di-
rect PEP-bound optimization of φ, θ, we solve for A to obtain a received SNR of
20dB. We observe that the rotation angles that maximize the diversity product
and the rotation angles that minimize the maximum PEP bound provide the
best results, with the latter having indeed better performance. The exact angle
values are shown in Table IV (along with the resulting diversity product and
minimum eigenvalue).

In Fig. 33, we repeat the studies of Fig. 2 for symbols chosen from an 8-
QAM non-rectangular constellation [5]. To obtain the PEP-bound optimal φ, θ,
values we solve for A that corresponds to received SNR of 30dB. Again, all
calculated values are given in Table IV. For reference purposes, we include in
our comparisons the 8× 8 single-symbol decodable STBC in [7]. Since the code
in [7] contains only two unique eigenvalues the rotation angle of tan−1(1/2) is
PEP-bound optimal for that code; since its rate is 3/4, we select symbols from a
16-QAM constellation to ensure equal spectral efficiency for all codewords under
comparison. Our PEP-bound optimized codeword in (196) offers a gain of about
1 dB over the single-symbol decodable STBC in [7]. The minimum eigenvalue
optimized version performs almost similarly well. As argued in Section IV.C,
due to decreased values of the minimum eigenvalues as compared to the 4-QAM
scenario, the maximum diversity (eigenvalue) product optimized system seems
to lose diversity over the operable SNR range. Similar performance loss was also
observed in [10] when the rotation angles were chosen to maximize the diversity
product.

F. Conclusions

We proposed an alternative representation of the 8 × 8 two-symbol decodable
quasi-orthogonal space-time block code (QO-STBC) that can be used on both
8 and 4-transmit-antenna systems. For the 8-transmit-antenna case, we derived
three different sets of rotation angle values: maximum diversity-product opti-
mal, maximum minimum-eigenvalue optimal, and minimum maximum-pairwise-
error-probability-bound (PEP) optimal.

Most importantly, the proposed codeword doubles the transmit diversity
order of a 4-transmit-antenna system. By obtaining new expressions for the
PEP-upper-bound for correlated channels we were able to find rotation angles
that maximize the diversity product to 4-antenna transmission systems and also
proved that the rotation angles are independent of the correlation coefficient.
As a by-product, we showed that for the proposed codeword, maximization of
the sum of eigenvalues is an irrelevant/non-applicable criterion (for both 8 and
4-antenna transmissions).
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Appendix: Derivation of the PEP-upper-bound in (229)

The PEP for a fixed channel realization He is given by [12]

Pr(X → X̃|He) = Q

(√
A

2Nt
‖∆XHe‖F

)
(234)

where Q(x) = 1√
2π

∫∞
x
e−

y2

2 dy and ∆X
4
= X − X̃. Using the approximation

Q(x) ≤ 1
2e

− x2

2 we have

Pr(X → X̃|He) ≤
1

2
e−

A
4Nt

‖∆XHe‖2
F . (235)

To evaluate Pr(X → X̃) we observe that the channel coefficients are indepen-
dent and identically distributed (i.i.d) across receive antenna space (columns of
He are i.i.d) and

EH{Pr(X → X̃)} ≤ 1
2EH{∏Nr

j=1 e
− A

4Nt
‖∆Xhej

‖2

}
= 1

2

(
EH{e− A

4Nt
‖∆Xhej

‖2

}
)Nr (236)

whereEH{·} is the expectation operator over the channel coefficients and hej
, j =

1, . . . , Nr, are the columns of He. Correlation in space among the four real an-
tennas and the four virtual antennas is given by (199) and denoted by Rs.
Performing Cholesky decomposition on Rs = QQH , we obtain hej

= Qvj

where vj ∼ CN(0, I8). From (236) we have

‖∆Xhej
‖2 = hH

ej
∆XH∆Xhej

= vH
j QH∆XH∆XQvj .

Performing eigen-decomposition on QH∆XH∆XQ, it can be shown [12]

Pr(X → X̃) ≤ 1

2

(
R∏

i=1

{
1

1 + AΛi

4Nt

})Nr

(237)

where Λi are the eigenvalues of QH∆XH∆XQ. Since eig(QH∆XH∆XQ) =
eig(QQH∆XH∆X) = eig(Rs∆XH∆X) = eig(∆XRs∆XH ) [15], thus we have
the PEP-upper-bound in (229).
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TABLE IV
OPTIMAL ANGLES

QAM Criterion (φ, θ)
Diversity
Product

Min.
Eigenvalue

4
Diversity
Product

(37.9, 21.4) 0.1747 0.0093

4
Min.

Eigenvalue
(30.9, 13.3) 0.1623 0.0524

4
Max.

PEP Bound
(28.5, 40) 0.1352 0.0112

8
Diversity
Product

(tan−1(2)/2,
tan−1(1/2)/2)

0.1071 2.35× 10−4

8
Min.

Eigenvalue
(3, tan−1(2)) 0.0732 0.0022

8
Max.

PEP Bound
(7.2, 25.1) 0.0792 2.7× 10−4
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Fig. 31: Block-error-rate versus SNR (4-transmit-antenna system).
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XI. Code-Division MAC in Wireless Sensor Networks by
Adaptive Binary Signature Design

This work has been presented at the 2007 SPIE Defense and Security Sympo-
sium, Orlando, FL.

Wireless sensor networks (WSN) are characterized by their dense and large
node population, severe energy constraints and asymmetric many-to-one data
flows [1]−[4] . In terms of node multiplexing for efficient medium sharing, the
distributed, decentralized nature and objectives of sensor networks do not fa-
vor time-division multiple-access (TDMA) developments. Similarly, frequency-
division multiple-access (FDMA), would require broad frequency tuning capa-
bilities of sensor transceivers and may be used for control and data channel
separation only. On the other hand, code-division multiple-access (CDMA)
seems to serve the particular needs of wireless sensor networks well.

In this work, we focus on CDMA channel design and allocation schemes
which allow many sensor nodes to transmit simultaneously over the common
shared medium and possibly collaborate with each other. The problem of
CDMA signature set optimization over the real/complex field was studied in
[5]−[8] . In the context of optimum design of binary signature sets, past work in-
cludes the recent developments in [9]−[12] that provide the first designs of binary
signature sets that exhibit minimum total-squared-correlation (TSC) for almost
all signature lengths and set sizes. The performance of other non-minimum TSC
binary signature sets was studied in [13],[14] . In this work, we deal with the
problem of pursuing dynamic code division MAC operations via fully adaptive
design of binary spreading codes that maximize the signal-to-interference-plus-
noise ratio (SINR) at the output of the maximum-SINR receiver. The optimal
code is a function of the disturbance autocovariance matrix and its evaluation
over the binary field is NP-hard.

A. Code-divison MAC: CDMA Channel Design and Al-
location

We consider code-division MAC along the following basic steps (Fig. 34). We
note that our focus is on CDMA channel design and allocation; other network
services such as organization, synchronization and routing are built at a higher
layer.

In step 1, node 1 uses an arbitrarily chosen signature and broadcasts a
signal that indicates intention to transmit. The broadcast signal is received
by node 2 in the presence of other node interference and noise. Node 2 sends
an acknowledgement to node 1 indicating availability to receive (and possibly
process and forward) future messages from node 1. In this acknowledgement,
node 2 submits an “optimally” designed binary signature (sopt). Subsequent
communication from node 1 to node 2 (step 3) is accomplished by means of
sopt.

Identifying an appropriate signature at step 2 allows subsequent data trans-
mission/reception that is impaired the least by the present disturbance (other
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node interference and noise). The above basic one-hop transmission is gener-
alized later in this paper to various multi-hop network configurations and the
performance of such schemes is evaluated in the simulations Section.

In this work we are interested in designing binary signature/spreading codes
that maximize the SINR of the output of the max SINR receiver which is an
NP-hard optimization problem. We begin our developments by introducing
formally the signal model and pertinent notation.

We consider a multinode CDMA-type environment where K nodes transmit
asynchronously, simultaneously in frequency and time, over different, in general,
multipath fading channels.

Assuming synchronization with the signal of the node of interest k, k =
1, 2, . . . ,K upon carrier demodulation, chip matched-filtering and sampling at
the chip rate over a presumed multipath extended data bit period of L+N −
1 chips, where L is the signature length and N is the number of resolvable
multipaths, the received data vector rk(m) ∈ CL+N−1 takes the following
general form,

rk(m) =
√
Ek bk(m)Hksk + zk + ik + nk, m = 0, 1, . . . . (238)

In (238), with respect to kth node, k = 1, 2, . . . ,K, bk(m) ∈ {±1} is the
mth data bit, m = 0, 1, 2, . . ., Ek represents transmitted energy per bit period,
Hk ∈ C(L+N−1)×L is the node k channel matrix of the form,

Hk (L+N−1)×L

4
=




hk,1 0 . . . 0
hk,2 hk,1 . . . 0

...
...

...
hk,N hk,N−1 0

0 hk,N hk,1

...
...

...
0 0 . . . hk,N




(239)

with entries hk,n, n = 1, . . . , N , considered as complex Gaussian random vari-
ables to model fading phenomena. sk ∈ {±1}L is the signature vector to be de-
signed. zk ∈ CL+N−1 represents comprehensively multiple-access-interference
(MAI) to node k by the other K − 1 nodes. ik ∈ C

L+N−1 denotes multi-
path induced inter-symbol-interference (ISI) to node k by its own signal, and
nk is a zero-mean additive Gaussian noise vector with autocorrelation matrix
σ2IL+N−1.

Information bit detection of node k is achieved via linear minimum-mean-
square-error (MMSE) filtering as follows (for one-shot detection the data bit
index can be suppressed),

b̂k = sgn
(
Re
{
wH

MMSE,krk

})
, k = 1, 2, · · · ,K (240)

where wMMSE,k = cR−1
k Hksk ∈ CL+N−1, Rk

4
= E{rkr

H
k }, c > 0, Re{·}

denotes the real part of a complex number, and E{·} represents statistical ex-
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pectation. We recall that the output SINR of the filter wMMSE,k is given by

SINRMMSE,k(sk) =

E

{∣∣∣wH
MMSE,k

(√
EkbkHksk

)∣∣∣
2
}

E

{∣∣∣wH
MMSE,k (zk + ik + nk)

∣∣∣
2
}

= Eks
H
k HH

k R̃−1
k Hksk (241)

where

R̃k
4
= E

{
(zk + ik + nk) (zk + ik + nk)

H
}

(242)

is the autocorrelation matrix of the compound channel disturbance. Since the
effect of ISI is practically negligible for CDMA communication systems, in the

rest of this paper, we will approximate R̃k by R̃k ≈ E
{
(zk + nk) (zk + nk)

H
}
.

Our objective is to find the signature sk ∈ {±1}L that optimizes (maximizes)
SINRMMSE,k, i.e.

sk,opt = arg max
s∈{±1}L

sHHH
k R̃−1

k Hks. (243)

In the rest of this section we present an algorithm that performs exactly this
optimization and, upon eigenvector decomposition, exhibits linear complexity
in the signature length.

For notational simplicity we define the L× L matrix

Qk
4
= HH

k R̃−1
k Hk (244)

Then, the SINR-optimum sequence (cf. (243)) is given by

sk,opt = arg max
s∈{±1}L

sHQks. (245)

The optimization problem in (245) is equivalent to

sk,opt = arg max
s∈{±1}L

sHQkrs (246)

where Qkr denotes the real part of the complex, in general, hermitian matrix

Qk (Qkr
4
= Re{Qk}).

If we relax, for a moment, our constraint that the signature (sequence) al-
phabet is binary and assume, instead, that s is real-valued (s ∈ RL) with same
norm (sHs = L), then the corresponding optimization problem becomes

s
(r)
k,opt = arg max

s∈RL,sHs=L
sHQkrs (247)

where the superscript (r) indicates that s
(r)
k,opt is real-valued. The optimization

in (247) is carried over a hypersphere in the RL space of radius L and centered
at the origin.
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Let {qk,1,qk,2, · · · ,qk,L} be the L eigenvectors of Qkr and {λk,1, λk,2, · · · , λk,L},
the corresponding eigenvalues such that λk,1 ≥λk,2 ≥ · · · ≥ λk,L. The real-
valued sequence that maximizes the right-hand-side of (247) is well known and
equal to the eigenvector that corresponds to the maximum eigenvalue of the
matrix Qkr, i.e.

s
(r)
k,opt = arg max

s∈RL,sHs=L
sHQkrs = qk,1. (248)

Since {qk,2,qk,3, · · · ,qk,L} are orthogonal to qk,1 by definition, the L− 1 lines
defined by

qk,1 + ρqk,i, i = 2, · · · , L, ρ ∈ R (249)

lie on the plane that is tangent to the searching hypersphere, pass through the
real maximizer qk,1, and define mutually orthogonal directions of least decrease

in the cost function sHQkrs , s ∈ R
L from the optimum point s

(r)
k,opt = qk,1. Pro-

jection of the above least decrease lines onto the searching hypersphere results
in the slowest descent cords given by

qk,1 + ρqk,i√
1 + ρ2

, i = 2, · · · , L, ρ ∈ R . (250)

The slowest descent cords in (250) trace the searching hypersphere, extend from

−qk,i to qk,i, i = 2, · · · , L, and pass through the optimum point s
(r)
k,opt. On these

cords, the function sHQkrs , s ∈ RL, takes values in [λk,iL, λk,1L] respectively.
Our objective is to identify the binary sequences that are closest in the l2 sense
to the above least decrease cords. Use of least-decrease-driven search for finite-
alphabet solutions has been considered in [15] to convert general maximum like-
lihood estimates to maximum likelihood decision. Some important observations
now follow.

(i) It is straightforward to show that for any given i ∈ {2, 3, · · · , L}, the
binary sequences that are closest in the l2 sense to the cord

qk,1+ρqk,i√
1+ρ2

, ρ ∈
R, can be expressed as sgn(qk,1 + ρqk,i). The set of all binary signatures
of the form sgn(qk,1 + ρqk,i), ρ ∈ R, has cardinality L+ 1.

(ii) The l2 distance measure of a binary sequence x ∈ {±1}L and a real

sequence y ∈ RL is conventionally defined as
∑L

i=1 (xi − yi)
2
, where xi

and yi, i = 1, · · · , L, are the binary and real elements of the vectors x and
y respectively.

(iii) The binary sequence x ∈ {±1}L
that is closest in the l2 sense to a given

real sequence y ∈ R
L has elements xi = sgn(yi), i = 1, · · · , L.

(iv) The binary sequence x ∈ {±1}L
that is closest to a cord, e.g.

qk,1+ρqk,i√
1+ρ2

,

ρ ∈ R, i ∈ {2, · · · , L}, is the sequence that satisfies minx∈{±1}L ‖x −
(
qk,1+ρqk,i√

1+ρ2
)‖2, ∀ρ ∈ R, where ‖ · ‖2 denotes l2-norm.
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Fig. 34: Code division MAC.

Our proposed binary signature search algorithm is outlined below.

Algorithm
For i = 2, · · · , P (P ≤ L) do :

1. Divide the range of ρ into non-overlapping intervals such that adjacent

intervals have opposite signs in exactly one coordinate. The intervals are defined
by the points

ρn = qk,1,n/qk,i,n, n = 1, · · · , L, (251)

where qk,i,n, n = 1, · · · , L, is the n-th element of the vector qk,i. Then, arrange
{ρ1, ρ2, · · · , ρL} in ascending order {ρ′1, ρ′2, · · · , ρ′L}, ρ′1 < ρ′2 < · · · < ρ′L.

Find the index, say J , of the first positive element in the ordered sequence
ρ′1, ρ

′
2, · · · , ρ′L, i.e. ρ′J−1 < 0 < ρ′J , J ∈ {1, 2, · · · , L}.

2. Find the binary sequence that is closest to the line qk,1 + ρqk,i for each

interval of ρ, i.e. for ρ ∈ (−∞, ρ′1),(ρ
′
1, ρ

′
2),· · · ,(ρ′L−1, ρ

′
L), (ρ′L,∞). There are

L+1 binary sequences in total (denoted as s0
k, s

1
k, · · · , sL

k ) that can be computed
recursively,

s0
k = sgn[qk,1] (252)

sl+1
k = sl

k − 2s0k,J+leJ+l, l = 0, 1, · · · , L− J (253)

sl
k = sl+1

k − 2s0k,J+leJ+l, l = −1,−2, · · · , 1 − J (254)

where s0k,J+l is the (J + l)th element of s0
k and eJ+l is the (J + l)-unit vector in

RL.
3. Evaluate SINR(sl

k) for each binary signature sl
k returned by Step 2,

l = 0, · · · , L, and choose the binary signature that gives maximum SINR. �

B. Simulation Studies

We consider five basic network configurations (Fig. 35(a)-(e)) to demonstrate
the performance of our proposed code division MAC scheme.

In particular, Figs. 35(a) and 35(b) represent a one-hop and a two-hop one-
to-one transmission, respectively. Figs. 35(c) and 35(d) represent a one-hop,
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Fig. 35: Sensor network configurations.

two-to-one and a one-hop one-to-two transmission correspondingly, while Fig.
35(e) describes a 4-node network configuration where communication of nodes
1 and 4 is achieved via node 2 and 3 that simply decode and forward. In every
network configuration, intended (desired) signals are received in the presence of
other node interference and noise.

We compare the performance of the proposed signature optimization algo-
rithm against the following benchmarks: (i) The maximum complex eigenvalue
eigenvector of Qk, denoted in the figures as “complex max-EV”, which is the
theoretical maximum SINR signature solution over the complex, CL, field and
(ii) the maximum real eigenvalue eigenvector of Qk, denoted as “real max-EV”,
which is the theoretical maximum SINR signature solution over the real, RL,
field.

We consider the multipath DS-CDMA signal model of the previous section
with spreading gain L = 16 and we assume the presence of K = 8 active nodes.
Each node signal experiences N = 3 independent paths and the corresponding
channel coefficients are assumed to be zero-mean complex Gaussian random
variables of equal energy. Then, following the notation of the previous section,
the total average received SNR for node k is,

SNRk
4
=
Ek

∑N
n=1E

{
|hk(n)|2

}

σ2
=
EkE

{
‖hk‖2

}

σ2
(255)

We set SNR1−3 = 8dB, SNR4−6 = 9dB, and SNR7−8 = 10dB. We initialize
the signature set arbitrarily and execute each signature set design scheme se-
quentially node-after-node in what we call a multinode adaptation cycle. Several
multinode adaptation cycles are carried out (all algorithms are seen to converge
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in about three cycles). A fixed Walsh-Hadamard signature assignment is also
included in the study to challenge, potentially, the notion of signature adaptiv-
ity. As we can see from Figs. 36-40, the static (non-adaptive or non-controlled)
Walsh-Hadamard signature assignment exhibits rather poor performance, as
expected, while the proposed adaptive binary signature design and assignment
scheme performs very close to the theoretical complex-EV and real-EV bench-
marks.

C. Conclusions

In this work we focused on the problem of CDMA channel design and allocation
for code division MAC of wireless sensor networks operating in multipath fad-
ing environments. We considered binary signature alphabets and thus pursued
digital signature optimization. We proposed and studied a suboptimal CDMA
channel design and allocation algorithm that, upon eigenvector decomposition,
exhibits linear computational complexity with respect to the signature length.
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Fig. 36: Net 1: One-hop, one-to-one transmission (L=16, K=8)
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Fig. 37: Net 2: Two-hop, one-to-one transmission (L=16, K=8)
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Fig. 38: Net 3: One-hop, two-to-one transmission (L=16, K=8)
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Fig. 39: Net 4: One-hop, one-to-two transmission (L=16, K=8)
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Fig. 40: Net 5: Four node configuration (two decode-and-forward nodes, L=16,
K=8)
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